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CHAPTER 1 

NUMBER SYSTEMS AND CODES 

DIGITAL SYSTEM 

INTRODUCTION 

You have previously studied how to represent a number in decimal, binary, octal and 

hexadecimal numbering systems and also how to make a conversion from one 

representation to the other ones. In the following sections, we will make a quick 

overview of these skills. Then, we will illustrate how to represent negative numbers in 

binary and how to make arithmetic operations on them. After that a group of the most 

used codes and their common uses are given. Finally, two famous and simple error 

correction and detection codes are given. 

BINARY NUMBERS 

In the well known decimal numbering system, each position can represent 10 different 
digits from 0 to 9. each position has a weighting factor of powers of 10. 

Example:  

To Evaluate (5621)10 each digit is multiplied by the weight of its position which is a 
power of 10.  

5621 = 1x100 + 2x101 + 6x102 + 5x103 

 

A similar approach is followed in the other numbering systems with a variation in the 
base (10, 2, 8, 16). In binary numbers, we can only use the digits 0 and 1 and the 
weights are powers of 2.  

Table[I] 

210 29 28 27 26 25 24 23 22 21 20 
1024 512 256 128 64 32 16 8 4 2 1 
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Binary to Decimal Conversion 

To convert a binary number into decimal, we multiply each bit (binary digit) by the 
weight of its position and sum up the results. 

Example: 

Convert the binary number (11011011)2 to decimal. 

Answer:  

 

(11011011)2 = 1x 20+ 1x 21+ 1x 23+ 1x 24+ 1x 26+ 1x27 = 1 + 2 + 8 +16 + 64 + 128 = 219 

 

Decimal to Binary Conversion 

There are two ways to make this conversion; the repeated division-by-2-
method (which you have studied before) and the sum of weights method (which will 
be illustrated now). 

Sum of weights method: 

To find a binary number that is equivalent to a decimal number, we can determine the 
set of binary weights whose sum is equal to the decimal number. We can use table[I] to 
determine the highest weight that is less than the number and put 1 in its position then 
subtracting it from the number and repeating the same process until finding all the 1s in 
the number then filling the positions in between with 0s. 

Example: 

Convert the following decimal numbers to binary form: 13, 100, 65, and 189. Put your 
answer as eight bit numbers. 

Answer:  

 

 128 64 32 16 8 4 2 1 
13   =  0 0 0 0 1 1 0 1 
100 =  0 1 1 0 0 1 0 0 
65   =  0 1 0 0 0 0 0 1 
189 =  1 0 1 1 1 1 0 1 
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Range of binary numbers: 

We have used eight bit numbers for illustration because the 8-bit grouping is 
standard in most computers and has been given the special name byte. Using eight 
bits, 256 different numbers can be represented. Combining two bytes to get sixteen 
bits, 65,536 different numbers can be represented. Combining four bytes to get 32 bits, 
4.295 X 109 different numbers can be represented, and so on. The formula for finding 
the number of different combinations of n bits is 

Total combinations = 2n  different numbers in the range  0 to (2n – 1) 

For  example a 4-bit number can hold up to 24=16 different values in the range 
0 to 15 (0 to 1111). An 8-bit number can hold up to 28=256 different values in the 
range 0 to 255 (0 to 11111111). 

Example: 

What is the range of values (in decimal) that can be represented by a binary number of 
the following number of bits:  10, 20  and 24. 

Solution: 

N=10                              range =  0  to 210 – 1 = 0 to 1023  

                                      i.e.  1024 (1K)numbers  

N=20                              range =  0  to 220 – 1 = 0 to 1048575  

                                        i.e.  1048576 (1M)numbers 

N=24                                range =  0  to 224 – 1 = 0 to 16777215  

                                          i.e.  16777216 (16M)numbers 

 

Binary Arithmetic 

Binary Addition 

The four cases for adding binary digits (A + B) are as follows: 

A B S C 
0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 0 1 

Where: S is the sum and C is the carry. 
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Example: 

Add the following binary numbers and put the result in 8-bits. Verify your answer by 
converting into decimal: a) 00111111 + 01111100 

b) 11101101 + 01000011 

Answer:  

a) 00111111 + 01111100 = 10111011        (63 + 124 = 187) 

b) 11101101 + 01000011 = 100110000     This example shows that the result could 

not fit in 8-bits ( 237 + 67 = 304) and the maximum capacity of 8-bits is 255. That is 

what we call overflow. 

 

1 1 1 1 1        1   1 1 1 1  
0 0 1 1 1 1 1 1     1 1 1 0 1 1 0 1 
0 1 1 1 1 1 0 0     0 1 0 0 0 0 1 1 
1 0 1 1 1 0 1 1    1 0 0 1 1 0 0 0 0 

Binary Subtraction 

The four cases for subtracting binary digits (A - B) are as follows: 

A B D B 
0 0 0 0 
0 1 1 1 
1 0 1 0 
1 1 0 0 

Where: D is the difference and B is the borrow. 

Example: 

Subtract the following binary numbers and put the result in 8-bits. Verify your answer 
by converting into decimal: a) 10111111 - 01111100 

b) 11101101 - 01000011 

Answer:  

a) 10111111 - 01111100 = 01000011           (191 - 124 = 67) 

b) 11101101 - 01000011 = 10101010          (237 – 67 = 170) 
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0 10                0 10  
1 0 1 1 1 1 1 1     1 1 1 0 1 1 0 1 
0 1 1 1 1 1 0 0     0 1 0 0 0 0 1 1 
0 1 0 0 0 0 1 1     1 0 1 0 1 0 1 0 

Binary Multiplication 

The four cases for multiplying binary digits (A x B) are as follows: 

A B P 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

Where: P is the product. 

Example: 

Multiply the following binary numbers and put the result in 8-bits. Verify your answer 
by converting into decimal: a) 11100 x 101  b) 11011 x 1101 

Answer:  

a)    11100 x 101  = 10001100 

(16+8+4) x (4+1) = (128+8+4)                28 x  5 = 140 

b)    11011 x 1101  = 101011111 

(16+8+2+1) x (8+4+1) = (256+64+16+8+4+2+1) 

27 x  13 = 351 

This case indicates a condition of overflow, where the resulting number (351) could 
not fit in 8-bits and we need an extra bit to represent it correctly. 

    1 1 1 0 0      1 1 0 1 1  

      1 0 1       1 1 0 1  

    1 1 1 0 0      1 1 0 1 1  

   0 0 0 0 0      0 0 0 0 0   

  1 1 1 0 0      1 1 0 1 1    

 1 0 0 0 1 1 0 0   1 1 0 1 1     

          1 0 1 0 1 1 1 1 1  
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Binary Division 

Division in binary numbers is similar to long division in decimal. 

Example: 

Divide the following binary numbers and put the result in 8-bits. Verify your answer 
by converting into decimal: 11001 ÷ 101  

Answer:  

a) 
 11001 ÷ 101  = 101 

(16+8+1) ÷ (4+1) = (4+1) 

25 ÷  5 = 5 

     1 0 1   

1 0 1 1 1 0 0 1   

   1 0 1     

     1 0 1   

     1 0 1   

     0 0 0   

          

OCTAL NUMBERS 

The eight allowable digits are 0,1,2,3,4,5,6 and 7 and the weights are powers 
of 8.  

Decimal Binary Octal 

0  0 0 0 0 
1  0 0 1 1 
2  0 1 0 2 
3  0 1 1  3 
4  1 0 0 4 
5  1 0 1 5 
6  1 1 0 6 
7  1 1 1 7 
8  1 0 0 0 1 0 
9  1 0 0 1 1 1 
10 1 0 1 0 1 2 
11 1 0 1 1 1 3 
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Octal Conversions 

Converting from binary to octal is simply a matter of grouping the binary 

positions in groups of three (starting at the least significant position) and writing down 

the octal equivalent. 

Example  

Convert the following binary numbers into octal: a) 10110111   b) 01101100 

Solution: 

a) 10110111 = 010 101 111 =  257  (add a zero to the left and start from the least 

significant bit (LSB) make groups of three bits and convert each group into 

octal) 

b) 01101100 = 001 101 100 = 154 

Example 

Convert the following octal number into binary:  a) 327   b)601 

Solution: 

a) 327 = 011 010 111 = 11010111  

(replace each octal number with three equivalent binary numbers even if the number 

can be represented by less than three bits) 

b) 601 = 110 000 001 = 110000001 

 To convert from octal to decimal, (multiply by weighting factors). 

Example: 

Convert 713 to decimal. 

Solution: 

713 = 7 x 82 + 1 x 81 + 3 x 80 = 459 

 To convert from decimal to octal, the successive-division procedure or the sum of 
weights procedure can be used. 
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Example 

Convert the following decimal numbers to octal: a) (596)10  b)  (100)10 

Solution: 

 83 82 81 80 

 512 64 8 1 
596   =  1 1 2 4 
1000 =  1 7 5 0 

 

 

 

 

 

 

 

 

 

 

 

HEXADECIMAL NUMBERS 

The 16 allowable digits are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E and F and the 
weights are powers of 16. 

Decimal Binary Hexadecimal 
0 0000 0000 0 0 
1 0000 0001 0 1 
2 0000 0010 0 2 
3 0000 0011 0 3 
4 0000 0100 0 4 
5 0000 0101 0 5 
6 0000 0110 0 6 
7 0000 0111 0 7 

a) 596 ÷ 8 = 74 remainder 4 

 74 ÷ 8 = 9 remainder 2          1124 

 9 ÷ 8 = 1 remainder 1 

 1 ÷ 8 = 0 remainder 1 

b) 1000 ÷ 8 = 125 remainder 0 

 125 ÷ 8 = 15 remainder 5       1750 

 15 ÷ 8 = 1 remainder 7 

 1 ÷ 8 = 0 remainder 1 
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8 0000 1000 0 8 
9 0000 1001 0 9 
10 0000 1010 0 A 
11 0000 1011 0 B 
12 0000 1100 0 C 
13 0000 1101 0 D 
14 0000 1110 0 E 
15 0000 1111 0 F 
16 0001 0000 1 0 
17 0001 0001 1 1 
18 0001 0010 1 2 
19 0001 0011 1 3 
20 0001 0100 1 4 

Hexadecimal Conversion 

Converting from binary to hexadecimal is simply a matter of grouping the 

binary positions in groups of four (starting at the least significant position) and writing 

down the hexadecimal equivalent. 

Example  

Convert the following binary numbers into hexadecimal: a) 10101111   b) 01101100 

Solution: 

a) 10110111 = 1011 0111 =  (B 7)16 

b) 01101100 = 0110 1100 = (6 C)16 

Example 

Convert the following hexadecimal number into binary:  a) A2E   b)60F 

Solution: 

a) (A2E)16 = 1010 0010 1110 = (101000101110)2 

(replace each hexadecimal number with four equivalent binary numbers even if the 

number can be represented by less than four bits) 

b) (60F)16 = 0110 0000 1111 = (011000001111)2 

 To convert from hexadecimal to decimal, (multiply by weighting factors). 
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Example: 

Convert (7AD)16 to decimal. 

Solution: 

(7AD)16 = 7 x 162 + 10 x 161 + 13 x 160 = (1965)10 

 To convert from decimal to hexadecimal, the successive-division procedure or the 
sum of weights procedure can be used. 

Example 

Convert the following decimal numbers to hexadecimal: a) (596)10  b)  (100)10 

Solution: 

 162 161 160 

 256 16 1 
596   =  2 5 4 
1000 =  3 E 8 

a) 596 ÷ 16 = 37 remainder 4 

 37 ÷ 8 = 4 remainder 5      
 554 

 5 ÷ 8 = 0 remainder 5 

b) 1000 ÷ 16 = 62 remainder 8 

 62 ÷ 16 = 3 remainder 14      
  3E8 

 3 ÷ 16 = 0 remainder 3 

1’s and 2’s COMPLEMENTS 

1’s and 2’s complement allow the representation of negative numbers in 
binary. In most computers 2’s complement is used to represent negative numbers. 

The 1's complement of a binary number is found by simply changing all 1s 
to 0s and all 0s to 1s. 
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Example: 

Obtain the 1’s complement of the following binary numbers: 10001111, 01101100 and 
00110011 

Solution 

The 1’s complement of 10001111 = 01110000 . 

The 1’s complement of 01101100 = 10010011 . 

The 1’s complement of 00110011 = 11001100 . 

The 2's complement of a binary number is found by adding 1 to the LSB of 
the 1 's complement. 

Another way of obtaining the 2’s complement of a binary number is to start 
with the LSB (the rightmost bit) and leave the bits unchanged until you find the first 
1. Leave the first 1 unchanged and complement the rest of the bits (change 0 to 1 
and 1 to 0). 

Example: 

Obtain the 2’s complement of the following binary numbers: 10001111, 01101100 and 
00110011 

Solution 

The 2’s complement of 10001111 = 01110000 +1 = 01110001 

The 2’s complement of 01101100 = 10010011 + 1 = 01101101 

The 2’s complement of 00110011 = 11001100 + 1 = 00110100 

To convert from a 1's or 2's complement back to the true (uncomplemented) 
binary form, use the two procedures described previously. To go from the 1s 
complement back to true binary, reverse all the bits. To go from the 2's complement 
form back to true binary, take the 1's complement and add 1 to the least significant bit. 

REPRESENTATION OF SIGNED NUMBERS 

Computer, must be able to handle both positive and negative numbers. There 
are three basic ways to represent signed numbers; sign-magnitude, 1’s complement 
and 2’s complement. 

Sign-Magnitude  

The number consists of two parts: the MSB (most significant bit) represents 
the sign and the other bits represent the magnitude of the number. If the sign bit is 1 
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the number is negative and if it is 0 the number is positive. To illustrate this let us 
have an example. 

Example: 

Express each of the following numbers as an 8-bit number in sign-magnitude form:  

-30, 30, -121 and +99. 

Solution: 

-30 = 1 0011110  (The leftmost 1 indicates that the number is negative. The remaining 
7-bits carry the magnitude of 30) 

30 = 0 0011110  (The only difference between –30 and +30 is the sign bit because the 
magnitude bits are similar in both numbers.) 

-121 = 1 1111001  

99 = 0 1100011 

Example: 

Find the decimal value of each of the following numbers if they are expressed in sign-

magnitude form: 10111001 , 11111111 and 01111111. 

Solution: 

10111001 = -57  (The leftmost 1 indicates that the number is negative. The remaining 
7-bits carry the magnitude of 57) 

11111111 = -127  (The minimum number that can be represented in an 8-bit register 
using sign-magnitude representation) 

01111111 = +127 (The maximum number that can be represented in an 8-bit register 
using sign-magnitude representation) 

Range of numbers in Sign-Magnitude Representation: 

In general for an n-bit number, the range of values that could be represented 
using sign-magnitude notation is from –(2n-1-1) to +(2n-1-1). For example if n=8 the 
range is from –127 to 127. 

1’s Complement 

Negative numbers are represented in 1’s complement format whereas positive 
numbers are represented as the positive sign-magnitude numbers 
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Example: 

Express each of the following numbers as an 8-bit number in 1’s complement form:  

30, -30, -121 and +99. 

Solution: 

30 = 00011110 

-30 = 11100001  (the number equals the 1’s complement of 30) 

121 = 01111001  -121 = 10000110 

99 = 01100011 

Example: 

Find the decimal value of each of the following numbers if they are expressed in 1’s 

complement form: 10111001 , 11111111 ,10000000 and 01111111. 

Solution: 

10111001 = -01000110 = -70  (The leftmost 1 indicates that the number is negative. 
Take the 1’s complement of the number to get the 
magnitude of 70) 

11111111 = -00000000 = -0  (That is one of the problem of 1’s complement 
representation, there are two representations of zero a 
positive one and a negative one.) 

01111111 = +127 (The maximum number that can be represented in an 8-bit register 
using 1’s complement representation) 

10000000 = -01111111 = -127 (The maximum number that can be represented in an 8-
bit register using 1’s complement representation) 

Range of numbers in 1’s complement Representation: 

It is exactly the same as the range of numbers in sign-magnitude. 

2’s Complement 

Negative numbers are represented in 2’s complement format whereas positive 
numbers are represented exactly the same way as in sign-magnitude and in 1’s 
complement. 
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Example: 

Express each of the following numbers as an 8-bit number in 2’s complement form:  

30, -30, -121 and +99. 

Solution: 

30 = 00011110 

-30 = 11100010  (the number equals the 2’s complement of 30) 

121 = 01111001  -121 = 10000111 

99 = 01100011 

Example: 

Find the decimal value of each of the following numbers if they are expressed in 2’s 

complement form: 10111001 , 11111111 ,10000000 and 01111111. 

Solution: 

10111001 = -01000111 = -71  (The leftmost 1 indicates that the number is negative. 
Take the 2’s complement of the number to get the 
magnitude of 71) 

11111111 = -00000001 = -1  (The problem of two representations of zero is not found 
in 2’s complement.) 

01111111 = +127 (The maximum number that can be represented in an 8-bit register 
using 2’s complement representation) 

10000000 = -10000000 = -128 (The minimum number that can be represented in an 8-
bit register using 2’s complement representation) 

Range of numbers in 2’s complement Representation: 

In general for an n-bit number, the range of values that could be represented 
using 2’s complement notation is from –(2n-1) to +(2n-1-1). For example if n=8 the 
range is from –128 to 127. 

You may note from the previous examples that a binary number may have 
different values depending on the type of representation used to interpret this number. 
The following table clarifies this fact for a 4-bit binary number. 

 unsigned Sign-magnitude 1’s complement 2’s complement 
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0000 0 0 0 0 
0001 1 1 1 1 
0010 2 2 2 2 
0011 3 3 3 3 
0100 4 4 4 4 
0101 5 5 5 5 
0110 6 6 6 6 
0111 7 7 7 7 
1000 8 -0 -7 -8 
1001 9 -1 -6 -7 
1010 10 -2 -5 -6 
1011 11 -3 -4 -5 
1100 12 -4 -3 -4 
1101 13 -5 -2 -3 
1110 14 -6 -1 -2 
1111 15 -7 -0 -1 

 

2's Complement Evaluation: 

Positive and negative numbers in the 2's complement system are evaluated by 

summing the weights in all bit positions where there are 1s and ignoring those 

positions where there are zeros. The weight of the sign bit in a negative number is 

given a negative value. 

EXAMPLE 

Determine the decimal values of the signed binary numbers expressed in 2's 

complement: (a) 01010110    (b) 10101010. 

Solution 

(a) The bits and their powers-of-two weights for the positive number are as follows: 

-27 26 25 24 23 22 21 2° 

0 1 0 1 0 1 1 0 

Summing the weights where there are 1's, 

64 + 16 + 4 + 2 = +86 
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(b) The bits and their powers-of-two weights for the negative number are as follows. 

Notice that the negative sign bit has a weight of —27 = —128. 

-27 26 25 24 23 22 21 2° 

1 0 1 0 1 0 1 0 

Summing the weights where there are 1's, 

-128 + 32 + 8 + 2 = -86 

From these examples, you can see one of the reasons why the 2's complement 

system is preferred for representing signed numbers: It simply requires a summation 

of weights regardless of whether the number is positive or negative. The sign-

magnitude system requires two steps—sum the weights of the magnitude bits and 

examine the sign bit to determine if the number is positive or negative. The 1's 

complement system requires adding 1 to the summation of weights for negative 

numbers but not for positive numbers. 

Also, the 1's complement system is generally not used because two representations of 

zero (00000000 or 11111111) are possible. 

The 2's complement system is preferred and is used in most computers because it 

makes arithmetic operations easier, as you will see. 

ARITHMETIC OPERATIONS WITH SIGNED NUMBERS 

In the last section, you learned how signed numbers are represented in three 
different systems. In this section, you will learn how signed numbers are added and 
subtracted. Because the 2's complement system for representing signed numbers is the 
most widely used in computers and microprocessor-based systems, the coverage in 
this section is limited to 2 's complement arithmetic. The processes covered can be 
extended to the other systems if necessary. 

Addition 

The two numbers in an addition are the addend and the augend. The result is 
the sum. There are four cases that can occur when two signed binary numbers are 
added: 
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1. Both numbers positive 

2. Positive number with magnitude larger than negative number 

3. Negative number with magnitude larger than positive number 

4. Both numbers negative 

Let's take one case at a time using 8-bit signed numbers as examples. The equivalent 

decimal numbers are shown for reference. 

Both numbers positive:    00000111      7 

+ 00000100    + 4 

   00001011     11 

The sum is positive and is therefore in true (uncomplemented) binary. 

Positive number with magnitude larger than negative number: 

  00001111      15 

+ 11111010    + -6 

Discard carry —————1      00001001        9 

The final carry bit is discarded. The sum is positive and therefore in true 

(uncomplented) binary. 

Negative number with magnitude larger than positive number: 

   00010000       16 

+ 11101000    + -24 

    11111000       -8 

The sum is negative and therefore in 2's complement form. 

Both numbers negative:                      11111011      —5 
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+ 11110111    + -9 

Discard carry—————>             1  11110010     -14 

The final carry bit is discarded. The sum is negative and therefore in 2's complement 

form.In a computer, the negative numbers are stored in 2's complement form so, as 

you can see, the addition process is very simple: Add the two numbers and discard 

any final carry bit. 

Overflow Condition  

When two numbers are added and the number of bits required to represent the 
sum exceeds the number of bits in the two numbers, an overflow results as indicated 
by an incorrect sign bit. An overflow can occur only when both numbers are positive 
or both numbers are negative. The following 8-bit example will illustrate this 
condition. 

   01111101      125 

+ 00111010    + 58 

   10110111      183 

Sign incorrect           Magnitude incorrect 

In this example the sum of 183 requires eight magnitude bits. Since there are seven 

magnitude bits in the numbers (one bit is the sign), there is a carry into the sign bit 

which produces the overflow indication. 

Numbers Are Added Two at a Time  

Subtraction 

Subtraction is a special case of addition. For example, subtracting +6 (the 
subtrahend from +9 (the minuend) is equivalent to adding —6 to +9. Basically, the 
subtraction operation changes the sign of the subtrahend and adds it to the minuend. 
The result of a subtraction is called the difference. 

The sign of a positive or negative binary number is changed by taking its 2's 

complement. 

For example, taking the 2's complement of the positive number 00000100 (+4), you 

get 11111100, which is —4 as the following sum-of-weights evaluation shows: 
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-128 + 64 + 32 + 16 + 8 + 4 = -4 

As another example, taking the 2's complement of the negative number 11101101 (—

19), you get 00010011, which is +19 as the following evaluation shows: 

16 + 2+ 1 = 19 

Since subtraction is simply an addition with the sign of the subtrahend changed, the 

process is stated as follows: 

To subtract two signed numbers, take the 2's complement of the subtrahend and 

add, discarding any final carry bit. 

EXAMPLE  

Perform each of the following subtractions of the signed numbers: 

(a) 00001000 - 00000011   (b) 00001100 - 11110111 

(c) 11100111 - 00010011   (d) 10001000 - 11100010 

Solution  

Like in other examples, the equivalent decimal subtractions are given for reference. 

(a) In this case, 8 - 3 = 8 + (-3) = 5. 

   00001000    Minuend (+8) 

+ 11111101    2's complement of subtrahend (-3) 

Discard carry —> 1  00000101    Difference (+ 5) 

 (b) In this case, 12 - (-9) = 12 + 9 = 21. 

   00001100    Minuend (+12) 

+ 00001001    2's complement of subtrahend (+9) 

    00010101    Difference (+21) 

(c) In this case, -25 - (+19) = -25 + (-19) = -44. 
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    11100111    Minuend (-25) 

 + 11101101    2's complement of subtrahend (-19) 

Discard carry —>1 11010100    Difference (-44) 

(d) In this case, -120 - (-30) = -120 + 30 = -90 

   10001000    Minuend (-120) 

+ 00011110    2's complement of subtrahend (+30) 

   10100110    Difference (-90) 

BINARY CODED DECIMAL (BCD) 

The  binary coded decimal system is used to represent each of the ten decimal 
digits as a 4-bit binary code. This code is useful in dealing with decimal numbers. As 
you know a 4-bit binary number can represent up to 16 numbers (0-15) but there are 
only 10 decimal digits (0-9), so we have 6 representations (10-15) which are not used 
in the BCD code. 

To convert a decimal number to BCD replace each digit with a corresponding 
4-bit binary number even if the number can be represented by less than 4 bits. To 
convert a BCD number into decimal make groups of 4 bits starting from the LSB, if 
necessary add extra zeroes to the left then convert each 4-bits to decimal. 

Decimal BCD 
0 0000 
1 0001 
2 0010 
3 0011 
4 0100 
5 0101 
6 0110 
7 0111 
8 1000 
9 1001 

Example: 

Convert the following decimal numbers to BCD: 125, 909 and 1476. 

Solution: 

(125)10 = 0001 0010 0101 

 (909)10 = 1001 0000 1001 
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(1476)10 = 0001 0100 0111 0110 

Example: 

Convert the following BCD numbers to decimal: 100000101001, 1101110010, 

1010000101 and 110010000101. 

Solution: 

1000 0010 1001 = (825)10 

0011 0111 0010 = (372)10 

0010 1000 0101= (285)10 

1100 1000 0101 = This number can not be a BCD number because 1100 is the binary 
representation of 12 and this is not a valid decimal digit. 

THE ASCII CODE 

To get information into and out of a computer, we need more than just numeric 
representations; we also have to take care of all the letters and symbols used in day-to-
day processing. Information such as names, addresses, and item descriptions must be 
input and output in a readable format. But remember that a digital system can deal 
only with 1's and 0's. Therefore, we need a special code to represent all alphanumeric 
data (letters, symbols, and numbers). 

Most industry has settled on an input/output (I/O) code called the American 
Standard Code for Information Interchange (ASCII). The ASCII code uses 7 bits to 
represent all the alphanumeric data used in computer I/O. Seven bits will yield 128 
different code combinations, as listed in the following Table. Each time a key is 
depressed on an ASCII keyboard, that key is converted into its ASCII code and 
processed by the computer. Then, before outputting the computer contents to a display 
terminal or printer, all information is converted from ASCII into standard English. 

 

ASCII control characters 

Name Decimal Hex ..Key, Description 

NUL 0 00 CTRL@ null character 
SOH 1 01 CTRL A start of header 
STX 2 02 CTRL B start of text 
ETX 3 03 CTRL C end of text 
EOT 4 04 CTRL D end of transmission 
ENQ 5 05 CTRL E enquire 
ACK 6 06 CTRL F acknowledge 
BEL 7 07 CTRL G bell 
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BS 8 08 CTRL H backspace 
HT 9 09 CTRL I horizontal tab 
LF 10 OA CTRL J line feed 
VT 11 OB CTRL K vertical tab 
FF 12 OC CTRL L form feed (new page) 
CR 13 OD CTRL M carriage return 
SO 14 OE CTRL N shift out 
SI 15 OF CTRL O shift in 
DLE 16 10 CTRL P data link escape 
DC1 17 11 CTRL Q device control 1 
DC2 18 12 CTRL R device control 2 
DC3 19 13 CTRL S device control 3 
DC4 20 14 CTRL T device control 4 
NAK 21 15 CTRL U negative acknowledge 
SYN 22 16 CTRL V synchronize 
ETB 23 17 CTRL W end of transmission block 
CAN 24 18 CTRL X cancel 
EM 25 19 CTRL Y end of medium 
SUB 26 1A CTRL Z substitute 
ESC . 27 1B CTRL [ escape 
FS 28 1C CTRL / file separator 
GS 29 ID CTRL ] group separator 
RS 30 1E CTRL^ record separator 
US 31 IF CTRL_ unit separator 

 

EXTENDED ASCII CHARACTERS 

In addition to the 128 standard ASCII characters, there are an additional 128 
characters that were adopted by IBM for use in their PCs. Because of the popularity of 
the PC, these particular extended ASCII characters are also used in applications other 
than PCs and have become essentially an unofficial standard. 

The extended ASCII characters are represented by an 8-bit code series from 
hexadecimal 80 to hexadecimal FF. The extended ASCII contains characters in the 
following general categories: 

1. Foreign (non-English) alphabetic characters 

2. Foreign currency symbols 

3. Greek letters 

4. Mathematical symbols 
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5. DRAWING CHARACTERS 

6. Bar graphing characters 

7. Shading characters 

Extended ASCII characters 

Sym
bol 

Dec Hex Sy
mb
ol 

Dee Hex Sy
mb
ol 

Dec Hex Sym
bol 

Dec Hex 

Ç 128 80 á 160 A0 └ 192 C0 α 224 E0 
ü 129 81 í 161 Al ┴ 193 Cl β 225 E1 
é 130 82 ó 162 A2 ┬ 194 C2 Γ 226 E2 
â 131 83 ú 163 A3 ├ 195 C3 π 227 E3 
ä 132 84 ñ 164 A4 ┤ 196 C4 Σ 228 E4 
à 133 85 Ñ 165 A5 ┼ 197 C5 б 229 E5 
å 134 86 ā 166 A6 ╞ 198 C6 μ 230 E6 
ç 135 87 ō 167 A7 ╟ 199 C7 τ 231 E7 
ê 136 88 ¿ 168 A8 ╚ 200 C8 Φ 232 E8 
ë 137 89 ⌐ 169 A9 ╔ 201 C9 Θ 233 E9 
è 138 8A ¬ 170 AA ╩ 202 CA Ω 234 EA 
ï 139 8B ½ 171 AB ╦ 203 CB δ 235 EB 
î 140 8C ¼ 172 AC ╠ 204 CC ∞ 236 EC 
ì 141 8D ¡ 173 AD ═ 205 CD Φ 237 ED 
Ä 142 8E « 174 AE ╬ 206 CE ε 238 EE 
Å 143 8F » 175 AF ╧ 207 CF ∩ 239 EF 
É 144 90 ░ 176 B0 ╨ 208 DO ≡ 240 F0 
æ 145 91 ▒ 177 B1 ╤ 209 Dl ± 241 F1 
Æ 146 92 ▓ 178 B2 ╥ 210 D2 ≥ 242 F2 
ô 147 93 │ 179 B3 ╙ 211 D3 ≤ 243 F3 
ö 148 94 ┤ 180 B4 ╘ 212 D4 ∫ 244 F4 
ò 149 95 ╡ 181 B5 ╒ 213 D5 ÷ 245 F5 
û 150 96 ╢ 182 B6 ╓ 214 D6 ≈ 246 F6 
ù 151 97 ╖ 183 B7 ╫ 215 D7  247 F7 
ÿ 152 98 ╡ 184 B8 ╪ 216 D8  248 F8 
Ö 153 99 ╣ 185 B9 ┘ 217 D9 ˚ 249 F9 
Ü 154 9A ║ 186 BA ┌ 218 DA • 250 FA 
ǿ 155 9B ╗ 187 BB █ 219 DB . 251 FB 
£ 156 9C ╝ 188 BC ▄ 220 DC √ 252 FC 
¥ 157 9D ╜ 189 BD ▌ 221 DD η 253 FD 
P, 158 9E ╛ 190 BE ▐ 222 DE ² 254 FE 
ƒ 159 9F ┐ 191 BF ▀ 223 DF ▪ 255 FF 

The Excess-3 Code 

Excess-3 is a digital code related to BCD that is derived by adding 3 to each 
decimal digit and then converting the result of that addition to 4-bit binary. Since no 
definite weights can be assigned to the four digit position, excess-3 is an unweighted 
code that has advantages in certain arithmetic operations. The excess-3 code for 
decimal 2 is  2+3=5 = (0101)2  The excess-3 code for each decimal digit is found by 
the same procedure. The entire code is shown in  the following Table. 
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Decimal Binary Excess-3 

0 0000 0011 
1 0001 0100 
2 0010 0101 
3 0011 0110 
4 0100 0111 
5 0101 1000 
6 0110 1001 
7 0111 1010 
8 1000 1011 
9 1001 1100 

Notice that ten of the possible 16 code combinations are used in the excess-3 code. The six 
invalid combinations are 0000, 0001, 0010, 1101, 1110, and 1111. 

Example: 

Convert each of the following decimal numbers to excess-3 code: 

(A) 25    (B) 630 

Solution 

First, add 3 to each digit in the decimal number, and then convert each resulting 4-bit sum to 
its equivalent binary code. 

(A) 25 = 01011000 ADD THREE TO BOTH DIGITS TO BE 5 (0101) AND 8 
(1000) THEN PUT THE REPRESENTATION OF ALL 
DIGITS TOGETHER. 

(b) 630 = 100101100011 as before 6 → 9 = (1001)2, 3 → 6 = (0110)2 and 0 → 3 = 
(0011)2. 

Self-Complementing Property  

The key feature of the excess-3 code is that it is self-complementing. This means that the 1's 
complement of an excess-3 number is the excess-3 code for the 9's complement of the 
corresponding decimal number. The 9's complement of a decimal number is found by 
subtracting each digit in the number from 9. For example, the 9's complement of 4 is 5. The 
excess-3 code for decimal 4 is 0111. The 1's complement of this is 1000, which is the excess-
3 code for the decimal 5 (and 5 is the 9's complement of 4). 

The usefulness of the 9's complement and thus excess-3 stems from the fact that subtraction 
of a smaller decimal number from a larger one can be accomplished by adding the 9's 
complement (1's complement of the excess-3 code) of the subtrahend (in this case the smaller 
number) to the minuend and then adding the carry to the result. When subtracting a larger 
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number from a smaller one, there is no carry, and the result is in 9's complement form and 
negative. This procedure has a distinct advantage over BCD in certain types of arithmetic 
logic. 

ERROR-DETECTION CODE 

Binary information can be transmitted from one location to another by electric wires or other 
communication medium. Any external noise introduced into the physical communication 
medium may change some of the bits from 0 to 1 or vice versa. The purpose of an error-
detection code is to detect such bit-reversal errors. One of the most common ways to achieve 
error detection is by means of a parity bit. A parity bit is an extra bit included with a message 
to make the total number of 1's transmitted either odd or even. A message of four bits and a 
parity bit P are shown in Table. If an odd parity is adopted, the P bit is chosen such that the 
total number of 1's is odd in the five bits that constitute the message and P. If an even parity is 
adopted, the P bit is chosen so that the total number of 1's in the five bits is even. Even parity 
being more common than odd parity. 

The parity bit is helpful in detecting errors during the transmission of information from one 
location to another. This is done in the following manner. An even parity bit is generated in 
the sending end for each message transmission. The message, together with the parity bit, is 
transmitted to its destination. The parity of the received data is checked. 

Parity bit 

Odd parity Even parity 
Message P Message P 
0000 1 0000 0 
0001 0 0001 1 
0010 0 0010 1 
0011 1 0011 0 
0100 0 0100 1 
0101 1 0101 0 
0110 1 0110 0 
0111 0 0111 1 
1000 0 1000 1 
1001 1 1001 0 
1010 1 1010 0 
1011 0 1011 1 
1100 1 1100 0 
1101 0 1101 1 
1110 0 1110 1 

1111 1 1111 0 
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QUESTIONS 

1) Convert the following unsigned binary numbers to decimal, octal, hexadecimal and 
BCD if possible. 

i. 10110010011 ii 110000111000 iii   1000111011 
2) Convert the following decimal numbers to binary, octal, hexadecimal and BCD. 

i. 739 ii 504   iii   861 
3) What is the minimum number of bits to represent each of the following unsigned 

decimal numbers: 5110, 256,451228 and 700. 
4) Add, multiply, subtract (A-B) and divide (A/B) each of the following binary numbers: 

i. A = 11010011 B = 1101 
ii. A = 101101 B= 101 

iii. A = 11101001 B = 1101 
iv. Represent each of the following decimal numbers (when possible) as an 8-bit 

number in each of the following formats: sign-magnitude, 1’s complement and 2’s 
complement. 

i   134                         ii   -54  iii   -128 iv   –150 v   328 

5) Represent each of the following decimal numbers (when possible) as a 16-bit number 
in each of the following formats: sign-magnitude, 1’s complement and 2’s complement. 

i   134 ii   -54 iii   -128 iv   –150 v   328  vi   1023 

6) For each of the following signed decimal numbers, what is the minimum number of 
bits to represent each of them if you are using: sign-magnitude format, 1’s complement 
and 2’s complement formats. 

i   134 ii   -54  iii   -128 iv   –150 v   328  vi   1023 

7) Determine the decimal value of the following signed binary numbers if they are 
expressed in sign-magnitude, 1’s complement and 2’s  complement. 

i   10010011 ii   01011010  iii   10000110  iv   11010001 

8) If A is a binary number, let COMP(A) be the 2’s complement of A.  prove that 
COMP(COMP(A)) = A.  

9) Show that overflow occurs in 2’s complement adddition when the carry-out of the left-
most column is the complement of the carry-out of the column next to the left-most.  
Use four different examples to prove it.  

10) An imaginary frog hops half the distance to its goal with eqach jump.  Its first jump is 
32cm.  How far will it have gone after four jumps?  Express your answer in binary and 
in decimal.  

11) How many different values can be formed with an eight-bit code?  How many 
different values can be formed if the most significant bit is always zero?  

12) There are about 3000 characters in written Japanese.  How many bits minimum would 
it take to represent the set of Japanese characters?  

13) Perform the following arithmetic operations by changing the decimal numbers to 8-bit 
binary in 2’s complement representation. Check your answer by changing the output 
from 2’s complement to decimal. 
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9 – 15, -28 – 64, -127 + 93, -50 + 100 

14) Perform the following operations if the numbers are in 2’s complement representation. 
Check for your answer by transforming to decimal. Check if there is an overflow. 

i   10010101 – 11010110  ii   01101100 + 10111111 

iii  10100011 + 11001100 iv  00111100 + 01010101 

15) What is meant by the overflow? 
16) Perform the following operations if the numbers are in 2’s complement representation. 

Indicate if there is an overflow or not. Check for your answer by transforming to 
decimal. 

i   01110101 + 01101010 ii   10010000 – 01000111 

iii 11010011 – 10110000 iv   01100000 - 00111111 

17) Perform the following operations if the numbers are in 2’s complement representation. 
Extend all the numbers to be represented in 8-bits before performing the operation. 
Indicate if there is an overflow or not. Check for your answer by transforming to 
decimal. 

i   1011 – 0110  ii    010111 – 1111 

iii 0110 – 0101010  iv   1001 – 110010 

v   10101 + 0110  vi    10111 + 0111 

vii 1110 + 0101010  viii 11001 + 100010 

18) Add an 8th bit for the following binary numbers to act once as an even parity and 
another time as an odd parity. 

i   1010001   ii   1111000 

iii 1101110   iv   1110111 

19) Convert the following decimal numbers to BCD and excess-3 . 

102, 897, 954, 045, 621 and 378 

20) Writ the following phrase by representing each alphanumeric in ASCII code. Use hex 
numbers for each character. 

“The Little Brown Fox Jumps Over The  Lazy Dog...1,2,3,4,5,6,7,8,9” 

21) What is the special property of excess-3 code that  makes it suitable to represent 
decimal numbers. 
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22) Determine the signed decimal value of  10010010for each of the following 
representations:  

a- Sign-magnitude representation.  
b- 2’s complement representation.  
c- BCD representation.  
d- Excess representation 

23) Determine the signed decimal value of  01010110  for each of the following 
representations:  

a- Sign-magnitude representation. 
b- 2’s complement representation. 
c- BCD representation. 

24) -Perform the subtraction of  (36 – 99)10  using the 2’s complement representation. 
Verify your answer by converting into decimal.  
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CHAPTER 2 

LOGIC GATES 

 

Boolean Variables & Truth Tables 

Boolean algebra differs in a major way from ordinary algebra in that boolean constants and 
variables are allowed to have only two possible values, 0 or 1. 

Boolean 0 and 1 do not represent actual numbers but instead represent the state of a voltage 
variable, or what is called its logic level.  

Some common representation of 0 and 1 is shown in the following diagram. 

LOGIC 0 LOGIC 1 
False True 
Off On 
Low  High 
No Yes 
Open Switch Close Switch 

In boolean algebra, there are three basic logic operations: OR, AND and NOT. These logic 
gates are digital circuits constructed from diodes, transistors, and resistors connected in such a 
way that the circuit output is the result of a basic logic operation (OR, AND, NOT) performed 
on the inputs.  

 

Truth Table 

A truth table is a means for describing how a logic circuit's output depends on the logic levels 
present at the circuit's inputs.  

In the following two-inputs logic circuit, the table lists all possible combinations of logic 
levels present at inputs A and B along with the corresponding output level X. 
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When either input A OR B is 1, the output X is 1. Therefore the function is an OR gate. 

OR Operation 

The expression X = A + B reads as "X equals A OR B".  
The + sign stands for the OR operation, not for ordinary addition. 

The OR operation produces a result of 1 when any of the input variable is 1. 

The OR operation produces a result of 0 only when all the input variables are 0. 

 

 

An example of three input OR gate and its truth table is as follows: 

 

 

With the OR operation, 1 + 1 = 1, 1+ 1 + 1 = 1 and so on. 
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Timing Diagrams of OR gates 

A timing diagram is a graph that displays the relationship of two or more waveforms with 
respect to time. The following example explains the operation of an OR gate with pulsed 
inputs. 

Example 

If the two input waveforms A and B are applied to an OR gate, what is the resulting output 
waveform? 

 

An application: Alarm System 

A simplified portion of an intrusion detection and alarm system is shown. This system could 
be used for one room in a home a room with two windows and a door. The sensors are 
magnetic switches that produce a HIGH output when open and a LOW output when closed. 
As long as the windows and the door are secured, the switches are closed and all three of the 
OR gate inputs are LOW. When one of the windows or the door is opened, a HIGH is 
produced on that input to the OR gate and the gate output goes HIGH. It then activates an 
alarm circuit to warn of the intrusion. 
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AND Operation 

The expression X = A • B reads as "X equals A AND B".  
The multiplication sign stands for the AND operation, same for ordinary multiplication of 1s 
and 0s. 

The AND operation produces a result of 1 occurs only for the single case when all of the 
input variables are 1. 

The output is 0 for any case where one or more inputs are 0 

 

 

An example of three input AND gate and its truth table is as follows: 

 

 

With the AND operation, 1•1 = 1, 1•1•1 = 1 and so on. 
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Timing Diagrams of AND gates 

To examine the operation of the AND gate, study the inputs at a certain time to determine the 
corresponding output. 

Example 

If the two input waveforms A and B are applied to an AND gate, what is the resulting output 
waveform? 

 

The output waveform is HIGH only when both inputs are high as shown. 

An application: A Seat Belt Alarm System 

 

an AND gate is used in a simple car seat belt alarm system to detect when the ignition switch 
is on and the seat belt is unbuckled. If the ignition switch is on, a HIGH is produced on input 
A of the AND gate. If the seat belt is not properly buckled, a HIGH is produced on input B of 
the AND gate. Also, when the ignition switch is turned on, a timer is started that produces a 
HIGH on input C for 30 s. 

If all three conditions exist—that is, if the ignition is on and the seat belt is unbuckled and the 
timer is running—the output of the AND gate is HIGH, and an audible alarm is energized to 
remind the driver. 



CHAPTER 2 LOGIC GATES 

 

- 37 – 

NOT Operation 

The NOT operation is unlike the OR and AND operations in that it can be performed on a 
single input variable. For example, if the variable A is subjected to the NOT operation, the 
result x can be expressed as 

x = A' 

where the prime (') represents the NOT operation. This expression is read as: 

x equals NOT A  

x equals the inverse of A  

x equals the complement of A  

Each of these is in common usage and all indicate that the logic value of x = A' is opposite to 
the logic value of A.  

The truth table of the NOT operation is as follows: 

 

 

1' = 0 because NOT 1 is 0 

0' = 1 because NOT 0 is 1 

The NOT operation is also referred to as inversion or complementation, and these terms are 
used interchangeably.  
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NOR Operation 

NOR and NAND gates are used extensively in digital circuitry. These gates combine the basic 
operations AND, OR and NOT, which make it relatively easy to describe then using Boolean 
Algebra. 

NOR is the same as the OR gate symbol except that it has a small circle on the output. This 
small circle represents the inversion operation. Therefore the output expression of the two 
input NOR gate is: 

X = ( A + B )' 

 

 

An example of three input OR gate can be constructed by a NOR gate plus a NOT gate: 

 

Negative AND equivalent of a NOR gate 

The truth table of the NOR gate shows that a HIGH is produced on the gate output only if all 
of the inputs are LOW. From this viewpoint, the NOR gate can be used for an AND operation 
that requires all LOW inputs to produce a HIGH output. This mode of operation is called 
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negative-AND. The term negative means that the inputs are defined to be in the active state 
when LOW. 

In the operation of a 2-input NOR gate functioning as a negative-AND gate, output X is 
HIGH if both inputs/A and B are LOW. 

 

 

An application: An aircraft landing indicator 

Problem: In an aircraft, as part of its functional monitoring system, a circuit is required to 
indicate the status of the landing gear prior to landing. A green LED display turns on if all 
three gears are properly extended when the "gear down" switch has been activated in 
preparation for landing. A red LED display turns on if any of the gears fail to extend properly 
prior to landing. When a landing gear is extended, its sensor produces a LOW voltage. When 
a landing gear is retracted, its sensor produces a HIGH voltage. Implement a circuit to meet 
this requirement. 

Solution Power is applied to the circuit only when the "gear down" switch is activated. Use a 
NOR gate for each of the two requirements as shown in figure. One NOR gate operates as a 
negative-AND to detect a LOW from each of the three landing geal sensors. When all three of 
the gate inputs are LOW, the three landing gear are properly extended and the resulting HIGH 
output from the negative-AND gate turns on the green LED display. The other NOR gate 
operates as a NOR to detect if one or more of the landing gear remain retracted when the 
"gear down" switch is activated. When one or more of the landing gear remain retracted, the 
resulting HIGH from the sensor is detected by the NOR gate, which produces a LOW output 
to turn on the red LED warning display. 
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NAND Operation 

NAND is the same as the AND gate symbol except that it has a small circle on the output. 
This small circle represents the inversion operation. Therefore the output expression of the 
two input NAND gate is: 

X = ( AB )' 
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Negative OR Equivalent Operation of the NAND Gate  

In the NAND gate's operation, one or more LOW inputs produce a HIGH output. The 
previous truth table shows that output X is HIGH (1) when any of the inputs, A and B, are 
LOW (0). From this viewpoint, the NAND gate can be used for an OR operation that requires 
one or more LOW inputs to produce a HIGH output. This mode of operation is referred to as 
negative-OR. The term negative means that the inputs are defined to be in the active state 
when LOW. 

In the operation of a 2-input NAND gate functioning as a negative-OR gate, output X is 
HIGH if either input A or input B is LOW, or if both A and Bare LOW. 

 

An application: A Manufacturing Plant  Tank Indicator 

Problem: A manufacturing plant uses two tanks to store a certain liquid chemical that is 
required in a manufacturing process. Each tank has a sensor that detects when the chemical 
level drops to 25% of full. The sensors produce a 5 V level when the tanks are more than one-
quarter full. When the volume of chemical in a tank drops to one-quarter full, the sensor puts 
out a 0 V level. 

It is required that a single green light-emitting diode (LED) on an indicator panel show when 
both tanks are more than one quarter full. Show how a NAND gate can be used to implement 
this function. 

Solution: As long as both sensor outputs are HIGH, indicating that both tanks are more than 
one quarter full, the NAND gate output is LOW.  The green LED circuit is arranged so that a 
low voltage turns it ON. 
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THE EXCLUSIVE-OR AND EXCLUSIVE-NOR GATES 

The exclusive-OR and exclusive-NOR gates are formed by the combination of other logic 
gates you have already studied. Because of their versatile range of applications, they are 
treated as basic gates and given their own symbols. 

The Exclusive- OR Gate 

The symbol of exclusive-OR (XOR for short) is shown along with its truth table. 

 

 Inputs output 

 A B X 
 0 0 0 
 0 1 1 
 1 0 1 
 1 1 0 

The symbol used to express the XOR is: X = AB. From the truth table, the operation of the 
XOR can be summarized as: 

In an XOR gate operation, output X is HIGH if input A is LOW and input B is HIGH, 
or if input A is HIGH and input B is LOW; X is LOW if A and B are both HIGH or 
both LOW. 

The Exclusive-NOR Gate 

The symbol of exclusive-NOR (XNOR for short or equivalence) is shown along with its truth 
table. 

 

 Inputs output 

 A B X 
 0 0 1 
 0 1 0 
 1 0 0 
 1 1 1 

The symbol used to express the XNOR is: X = AB. From the truth table, the operation of 
the XNOR can be summarized as: 

In an XNOR gate operation, output X is LOW if input A is LOW and input B is HIGH, 
or if input A is HIGH and input B is LOW; X is HIGH if A and B are both HIGH or 
both LOW. 

It is obvious that the XNOR is the complement of the XOR which is the reason of the bubble 
in the symbol of the XNOR. 
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Timing diagram 

EXAMPLE: 

 

INTEGRATED CIRCUIT LOGIC FAMILIES 

There are several different families of logic gates. Each family has its capabilities and 
limitations, its advantages and disadvantages. The following list describes the main logic 
families and their characteristics. You can follow the links to see the circuit construction of 
gates of each family. 

Diode Logic (DL) 

Diode logic gates use diodes to perform AND and OR logic functions. Diodes have the 
property of easily passing an electrical current in one direction, but not the other. Thus, diodes 
can act as a logical switch. 

Diode logic gates are very simple and inexpensive, and can be used effectively in specific 
situations. However, they cannot be used extensively, as they tend to degrade digital signals 
rapidly. In addition, they cannot perform a NOT function, so their usefulness is quite limited. 

 

 

In the figure above, you see a basic Diode Logic OR gate. We'll assume that a logic 1 is 
represented by +5 volts, and a logic 0 is represented by ground, or zero volts. In this figure, if 
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both inputs are left unconnected or are both at logic 0, output Z will also be held at zero volts 
by the resistor, and will thus be a logic 0 as well. However, if either input is raised to +5 volts, 
its diode will become forward biased and will therefore conduct. This in turn will force the 
output up to logic 1. If both inputs are logic 1, the output will still be logic 1. Hence, this gate 
correctly performs a logical OR function. 

 

The figure above shows the equivalent AND gate. We use the same logic levels, but the 
diodes are reversed and the resistor is set to pull the output voltage up to a logic 1 state. For 
this example, +V = +5 volts, although other voltages can just as easily be used. Now, if both 
inputs are unconnected or if they are both at logic 1, output Z will be at logic 1. If either input 
is grounded (logic 0), that diode will conduct and will pull the output down to logic 0 as well. 
Both inputs must be logic 1 in order for the output to be logic 1, so this circuit performs the 
logical AND function. 

Resistor-Transistor Logic (RTL) 

Resistor-transistor logic gates use Transistors to combine multiple input signals, which also 
amplify and invert the resulting combined signal. Often an additional transistor is included to 
re-invert the output signal. This combination provides clean output signals and either 
inversion or non-inversion as needed. 

RTL gates are almost as simple as DL gates, and remain inexpensive. They also are handy 
because both normal and inverted signals are often available. However, they do draw a 
significant amount of current from the power supply for each gate. Another limitation is that 
RTL gates cannot switch at the high speeds used by today's computers, although they are still 
useful in slower applications. 
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In this circuit, each transistor has its own separate input resistor, so each is controlled by a 
different input signal. However, the only way the output can be pulled down to logic 0 is if 
both transistors are turned on by logic 1 inputs. If either input is a logic 0 that transistor 
cannot conduct, so there is no current through either one. The output is then a logic 1. This is 
the behavior of a NAND gate. Of course, an inverter can also be included to provide an AND 
output at the same time. 

Diode-Transistor Logic (DTL) 

By letting diodes perform the logical AND or OR function and then amplifying the result with 
a transistor, we can avoid some of the limitations of RTL. DTL takes diode logic gates and 
adds a transistor to the output, in order to provide logic inversion and to restore the signal to 
full logic levels. 

 

The above gate t is a DL OR gate followed by an inverter. The OR function is still performed 
by the diodes. However, regardless of the number of logic 1 inputs, there is certain to be a 
high enough input voltage to drive the transistor into saturation. Only if all inputs are logic 0 
will the transistor be held off. Thus, this circuit performs a NOR function. 

The advantage of this circuit over its RTL equivalent is that the OR logic is performed by the 
diodes, not by resistors. Therefore there is no interaction between different inputs, and any 
number of diodes may be used. A disadvantage of this circuit is the input resistor to the 
transistor. Its presence tends to slow the circuit down, thus limiting the speed at which the 
transistor is able to switch states. 

Transistor-Transistor Logic (TTL)  

The physical construction of integrated circuits made it more effective to replace all the input 
diodes in a DTL gate with a transistor, built with multiple emitters. The result is transistor-
transistor logic, which became the standard logic circuit in most applications for a number of 
years. 



CHAPTER 2 LOGIC GATES 

 

- 46 – 

As the state of the art improved, TTL integrated circuits were adapted slightly to handle a 
wider range of requirements, but their basic functions remained the same. These devices 
comprise the 7400 family of digital ICs. 

 

The preceding figure shows an inverter designed with TTL logic. 

 

The preceding figure shows a 4-input NAND gate designed with TTL logic. 

Emitter-Coupled Logic (ECL) 

Also known as Current Mode Logic (CML), ECL gates are specifically designed to operate at 
extremely high speeds, by avoiding the "lag" inherent when transistors are allowed to become 
saturated. Because of this, however, these gates demand substantial amounts of electrical 
current to operate correctly. 
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CMOS Logic 

One factor is common to all of the logic families we have listed above: they use significant 
amounts of electrical power. Many applications, especially portable, battery-powered ones, 
require that the use of power be absolutely minimized. To accomplish this, the CMOS 
(Complementary Metal-Oxide-Semiconductor) logic family was developed. This family uses 
enhancement-mode MOSFETs as its transistors, and is so designed that it requires almost no 
current to operate. 

CMOS gates are, however, severely limited in their speed of operation. Nevertheless, they are 
highly useful and effective in a wide range of battery-powered applications. 

CMOS logic is a newer technology, based on the use of complementary MOS transistors to 
perform logic functions with almost no current required. This makes these gates very useful in 
battery-powered applications. The fact that they will work with supply voltages as low as 3 
volts and as high as 15 volts is also very helpful. 

 

CMOS gates are all based on the fundamental inverter circuit shown above. Note that both 
transistors are enhancement-mode MOSFETs; one N-channel with its source grounded, and 
one P-channel with its source connected to +V. Their gates are connected together to form the 
input, and their drains are connected together to form the output. 

The two MOSFETs are designed to have matching characteristics. Thus, they are 
complementary to each other. When off, their resistance is effectively infinite; when on, their 
channel resistance is about 200 . Since the gate is essentially an open circuit it draws no 
current, and the output voltage will be equal to either ground or to the power supply voltage, 
depending on which transistor is conducting. 

When input A is grounded (logic 0), the N-channel MOSFET is unbiased, and therefore has 
no channel enhanced within itself. It is an open circuit, and therefore leaves the output line 
disconnected from ground. At the same time, the P-channel MOSFET is forward biased, so it 
has a channel enhanced within itself. This channel has a resistance of about 200 , connecting 
the output line to the +V supply. This pulls the output up to +V (logic 1). 

When input A is at +V (logic 1), the P-channel MOSFET is off and the N-channel MOSFET 
is on, thus pulling the output down to ground (logic 0). Thus, this circuit correctly performs 
logic inversion, and at the same time provides active pull-up and pull-down, according to the 
output state. 
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This concept can be expanded into NOR and NAND structures by combining inverters in a 
partially series, partially parallel structure 

 

Most logic families share a common characteristic: their inputs require a certain amount of 
current in order to operate correctly. CMOS gates work a bit differently, but still represent a 
capacitance that must be charged or discharged when the input changes state. The current 
required to drive any input must come from the output supplying the logic signal. Therefore, 
we need to know how much current an input requires, and how much current an output can 
reliably supply, in order to determine how many inputs may be connected to a single output. 

However, making such calculations can be tedious, and can bog down logic circuit design. 
Therefore, we use a different technique. Rather than working constantly with actual currents, 
we determine the amount of current required to drive one standard input, and designate that as 
a standard load on any output. Now we can define the number of standard loads a given 
output can drive, and identify it that way. Unfortunately, some inputs for specialized circuits 
require more than the usual input current, and some gates, known as buffers, are deliberately 
designed to be able to drive more inputs than usual. For an easy way to define input current 
requirements and output drive capabilities, we define two new terms: 
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Fan-in 

The number of standard loads drawn by an input to ensure reliable operation. Most inputs 
have a fan-in of 1. 

Fan-out 

The number of standard loads that can be reliably driven by an output, without causing the 
output voltage to shift out of its legal range of values. 

Comparison of performance characteristics of CMOS, TTL and ECL 
logic gates. 

Technology CMOS 
(silicon 
gate) 

CMOS 
(metal 
gate) 

TTL 
std 

TTL 
LS 

TTL 
S 

TTL 
ALS 

TTL 
AS 

ECL 

Device series 74HC 4000B 74 74LS 74S 74ALS 74AS 10KH 
Power 
dissipation: 
Static 

 
 

 
 
1 uW 

 
 
10 
mW 

 
 
2 mW 

 
 
19 
mW 

 
 
1 mW 

 
 
8.5 
mW 

 
 
25 mW 

At 100 kHz 0.17 mW 0.1 mW 10 
mW 

2 mW 19 
mW 

1 mW 8.5 
mW 

25 mW 

Propagation 
delay time 

8 ns 50 ns 10 ns 10 ns 3 ns 4 ns 1.5 ns 1 ns 

Fan-out   10 20 20 20 40  

Std : standard 
LS: Low power Schottky
 S: Schottky 

ALS: Advanced Low power Schottky    AS: Advanced Schottky 

QUESTIONS 

Choose the correct answers in the following questions. 

1. Boolean algebra is different from ordinary algebra in which way? 
i. Boolean algebra can represent more than 1 discrete level between 0 and 1 

ii. Boolean algebra have only 2 discrete levels: 0 and 1 
iii. Boolean algebra can describe up to 3 levels of logic levels 
iv. They are actually the same 
v. NA 

The following 2 questions are referred to the below image: 
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2. What is the output X if both inputs A and B are 0? 

i. 0 
ii. 1 

iii. I don’t know 
iv. NA 

3. What is the output X if A=1 and B=0?  

i. 0 
ii. 1 

iii. I don’t know 
iv. NA 

4. For a three inputs (A,B C) OR gate, what inputs are needed if output=0?  

i. A=0, B=0, C=1 
ii. A=0, B=1, C=0 

iii. A=1, B=1, C=1 
iv. A=0, B=0,C=0 
v. NA 

The following 2 questions are referred to the below image: 

 

5. What is the output X if input A=1, B=0 and C=1?  

i. 0 
ii. 1 

iii. I don’t know 
iv. NA 

6. What inputs are needed if output=1?  

i. A=0, B=0, C=0 
ii. A=1, B=0, C=1 

iii. A=0, B=1, C=0 
iv. A=1, B=1,C=1 



CHAPTER 2 LOGIC GATES 

 

- 51 – 

v. NA 

The following 2 questions are related to the below image: 

 

7. What is the ouput of the above gate if input A=0, B=1?  

v. 0 
vi. 1 

vii. not sure 
viii. NA 

8. What are the value of the inputs if output=1?  

i. A=0, B=0 
ii. A=0, B=1 

iii. A=1, B=0 
iv. A=1, B=1 
v. I don't know 

The following 2 questions are related to the below image: 

 

9. What are the values of the inputs if output=0?  

i. A=0, B=0 
ii. A=0, B=1 

iii. A=1, B=0 
iv. A=1, B=1 
v. I don't know 

10. For the truth table below, what type of logic gate is it?  
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i. 3 Inputs OR 
ii. 3 Inputs AND 

iii. 3 Inputs NOR 
iv. 3 Inputs NAND 
v. Not sure 

11. If the two input waveforms A and B are applied to an AND gate, draw a timing diagram 
for the resulting output waveform? 

 

12. If the three input waveforms A, B and C are applied to a three input AND gate, draw a 
timing diagram for the resulting output waveform? 

 

13. Repeat problems 11 and 12 using OR gates. 
14. Repeat problems 11 and 12 using NOR gates. 
15. Repeat problems 11 and 12 using NAND gates. 
16. Repeat problem 11 using XOR gate. 
17. Repeat problem 11 using XNOR gate. 
18. Prove that AB = A'B +AB'. 
19. Prove that AB = AB +A'B'. 
20. . In the comparison of certain logic devices, it is noted that the power dissipation for one 

particular type increases as the frequency increases. Is the device TTL or CMOS?  
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21.  Using the table which compares logic families, determine which logic series offers the 
best performance considering both switching speed and power dissipation at 100 kHz. 
Note: Find the speed-power product of each and compare the results.  

22. Sensors are used to monitor the pressure and the temperature of a chemical solution stored 
in a vat. The circuitry for each sensor produces a HIGH voltage when a specified 
maximum value is exceeded. An alarm requiring a LOW voltage input must be activated 
when either the pressure or the temperature is excessive. Design a circuit for this 
application? 

23. Modify the logic circuit for the intrusion alarm introduced in this chapter so that two 
additional rooms, each with two windows and one door, can be protected 
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CHAPTER 3 

Boolean Algebra  

 

Describing Logic Circuits Algebraically 

Any logic circuit, no matter how complex, may be completely described using the Boolean 
operations, because the OR gate, AND gate, and NOT circuit are the basic building blocks of 
digital systems.  

This is an example of the circuit using Boolean expression: 

 

If an expression contains both AND and OR operations, the AND operations are performed 
first (X=AB+C : AB is performed first), unless there are parentheses in the expression, in 
which case the operation inside the parentheses is to be performed first (X=(A+B)+C : A+B 
is performed first). 

Circuits containing Inverters 

Whenever an inverter is present in a logic-circuit diagram, its output expression is simply 
equal to the input expression with a prime (') over it.  

 

Evaluating Logic Circuit Outputs 

Once the Boolean expression for a circuit output has been obtained, the output logic level can 
be determined for any set of input levels.  
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This are two examples of the evaluating logic circuit output: 

Let A=0, B=1, C=1, D=1 

X  = A'BC (A+D)' 

 = 0'•1•1• (0+1)' 

 = 1 •1•1• (1)' 

 = 1 •1•1• 0 

 = 0 

Let A=0, B=0, C=1, D=1, E=1 

X = [D+ ((A+B)C)'] • E 

 = [1 + ((0+0)1 )'] • 1 

 = [1 + (0•1)'] • 1 

 = [1+ 0'] •1 

 = [1+ 1 ] • 1 

 = 1 

In general, the following rules must always be followed when evaluating a Boolean 
expression: 

i. First, perform all inversions of single terms; that is, 0 = 1 or 1 = 0. 
ii.  Then perform all operations within parentheses. 

iii. Perform an AND operation before an OR operation unless parentheses indicate 
otherwise. 

iv. If an expression has a bar over it, perform the operations of the expression first and 
then invert the result. 

Determining Output Level from a Diagram 

The output logic level for given input levels can also be determined directly from the circuit 

diagram without using the Boolean expression.  
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Implementing Circuits From Boolean Expression 

If the operation of a circuit is defined by a Boolean expression, a logic-circuit diagram can he 
implemented directly from that expression. 

Suppose that we wanted to construct a circuit whose output is y = AC+BC' + A'BC. This 
Boolean expression contains three terms (AC, BC', A'BC), which are ORed together. This 
tells us that a three-input OR gate is required with inputs that are equal to AC, BC', and A'BC, 
respectively.  

Each OR-gate input is an AND product term, which means that an AND gate with appropriate 
inputs can be used to generate each of these terms. Note the use of inverters to produce the A' 
and C' terms required in the expression. 

 

Boolean Theorems 

 

Investigating the various Boolean theorems (rules) can help us to simplify logic expressions 
and logic circuits. 
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Multivariable Theorems 

The theorems presented below involve more than one variable: 

(9) x + y = y + x (commutative law) 

(10) x • y = y • x (commutative law) 

(11) x+ (y+z) = (x+y) +z = x+y+z (associative law) 

(12) x (yz) = (xy) z = xyz (associative law) 

(13a) x (y+z) = xy + xz (distributive law) 

(13b) x + yz = (x + y) (x + z) (distributive law) 

(13c) (w+x)(y+z) = wy + xy + wz + xz 

(14) x + xy = x [proof see below] 

(15) x + x'y = x + y 

(16) (x +y)(x + z) = x +yz 

(17) x + xy = x   (absorption) 

 

Proof of (14) 



CHAPTER3 BOOLEAN ALGEBRA 

 

- 58 – 

x + xy = x (1+y) 

 = x • 1 [using theorem (6)] 

 = x [using theorem (2)] 

Proof of (15) 

x + x’y = ( x + x’) (x + y)   [theorem 13b] 

 = 1 (x +y) 

 = (x + y) 

Proof of (16) 

(x +y)(x + z) =xx + xz + yx + yz 

 = x +  xz + yx + yz 

 = x (1+z+y) +yz 

 = x . 1 + yz 

 = x + yz 

EXAMPLE 

The logic circuit shown in Figure is used to turn on a warning bell at X based on the input 
conditions at A, B, and C. A simplified equivalent circuit that will perform the same function 
can be formed by using Boolean algebra. Write the equation of the circuit in Figure, simplify 
the equation, and draw the logic circuit of the simplified equation. 

 

Solution: 

The Boolean equation for X is 

X = B(A + C) + C = BA + BC + C = BA + C(B + 1) = BA+C.1 = BA + C 

X = BA + C  

The logic circuit of the simplified equation is shown in Figure. 
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DeMorgan's Theorem 

DeMorgan's theorems are extremely useful in simplifying expressions in which a 
product or sum of variables is inverted. The two theorems are: 

(18) (x+y)' = x' • y' 

(19) (x•y)' = x' + y' 

Theorem (18) says that when the OR sum of two variables is inverted, this is the same as 
inverting each variable individually and then ANDing these inverted variables.  

Theorem (19) says that when the AND product of two variables is inverted, this is the same as 
inverting each variable individually and then ORing them. 

 

Example 

X = [(A'+C) • (B+D')]' 

 = (A'+C)' + (B+D')'  

 = (AC') + (B'D) 

 = AC' + B'D 

Three Variables DeMorgan's Theorem 

(20) (x+y+z)' = x' • y' • z' 

(21) (xyz)' = x' + y' + z' 

Implications of DeMorgan's Theorem 

(x+y)' = x' • y' 
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(x•y)' = x' + y' 

 



CHAPTER3 BOOLEAN ALGEBRA 

 

- 61 – 

EXAMPLE: 

Apply DeMorgan’s theorems to each of the following expressions: 

(a) D)CBA(    

(b) DEFABC   

(c) EFDCBA   

solution: 

(a) D)CBA(   = DCBA  = DCBA   

(b) DEFABC  = )FED)(CBA()DEF)(ABC(   

(c) EFDCBA  = )EF()DC()BA( = )FE)(DC)(BA(   

Universality of NAND & NOR Gates 

It is possible to implement any logic expression using only NAND gates and no other type 
of gate. This is because NAND gates, in the proper combination, can be used to perform each 
of the Boolean operations OR, AND, and INVERT. 
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In a similar manner, it can be shown that NOR gates can be arranged to implement any of the 
Boolean operations. 

 

Alternate Logic Gate Representations 

The left side of the illustration shows the standard symbol for each logic gate, and the right 
side shows the alternate symbol. The alternate symbol for each gate is obtained from the 
standard symbol by doing the following: 

1. Invert each input and output of the standard symbol. This is done by adding bubbles (small 
circles) on input and output lines that do not have bubbles, and by removing bubbles that are 
already there. 

2. Change the operation symbol from AND to OR, or from OR to AND. (In the special case 
of the INVERTER, the operation symbol is not changed.) 
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Several points should be stressed regarding the logic symbol equivalences: 

1. The equivalences are valid for gates with any number of inputs. 

2. None of the standard symbols have bubbles on their inputs, and all the alternate symbols 
do. 

3. The standard and alternate symbols for each gate represent the same physical circuit: there 
is no difference in the circuits represented by the two symbols. 

4. NAND and NOR gates are inverting gates, and so both the standard and alternate symbols 
for each will have a bubble on either the input or the output. AND and OR gates are 
noninverting gates, and so the alternate symbols for each will have bubbles on both inputs and 
output. 
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Logic Symbol Interpretation 

Concept of Active Logic Levels: 

When an input or output line on a logic circuit symbol has no bubble on it, that line is said to 
be active-HIGH. When an input or output line does have a bubble on it, that line is said to be 
active-LOW. The presence or absence of a bubble, then, determines the active-HIGH/active-
LOW status of a circuit's inputs and output, and is used to interpret the circuit operation. 

CANONICAL AND STANDARD FORMS 

 

Minterms and Maxterms 

A binary variable may appear either in its normal form (x) or in its complement form (x'). 
Now consider two binary variables x and y combined with an AND operation. Since each 
variable may appear in either form, there are four possible combinations: 

x'y’, x'y, xy', and xy. Each of these four AND terms is called a minterm, or a standard product. 
In a similar manner, n variables can be combined to form 2n minterms. The 2n different 
minterms may be determined by a method similar to the one shown in the following table  for 
three variables. The binary numbers from 0 to 2n-1 are listed under the n variables. Each min 
term is obtained from an AND term of the n variables, with each variable being primed if the 
corresponding bit of the binary number is a 0 and unprimed if a 1. A symbol for each minterm 
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is also shown in the table and is of the form mj where j denotes the decimal equivalent of the 
binary number of the minterm designated. 

In a similar fashion, n variables forming an OR term, with each variable being primed or 
unprimed, provide 2n possible combinations, called maxterms, or standard sums. The eight 
maxterms for three variables, together with their symbolic designation, are listed in the 
following table. Any 2n maxterms for n variables may be determined similarly. Each maxterm 
is obtained from an OR term of the n variables, with each variable being unprimed if the 
corresponding bit is a 0 and primed if a 1. Note that each maxterm is the complement of its 
corresponding minterm, and vice versa. 

Minterms and Maxterms for Three Binary Variables 

 

 

 

x y z Minterms  Maxterms 
Term Designation Term Designationnation 

0 0 0 x' y’ z' m0 x+y+z M0 

0 0 1 x' y' z mi x+y+z’ M1 

0 1 0 x' y z’ m2 x+y’+z M2 

0 1 1 x' y z m3 x+y’+z’ M3 

1 0 0 x y' z’ m4 x'+y+z M4 

1 0 1 x y' z m5 x '+y+z’   M5 

1 1 0 x y z’ m6 x '+y’+z   M6 

1 1 1 x y z m7 x '+y’+z’   M7 

A Boolean function may be expressed algebraically from a given truth table by forming a 
minterm for each combination of the variables that produces a 1 in the function, and then 
taking the OR of all those terms. For example, the function f1 in the Table is determined by 
expressing the combinations 001, 100, and 111 as x'y'z, xy'z', and xyz, respectively. Since each 
one of these minterms results in f1 = 1, we should have 

f1 = x'y'z + xy'z' + xyz = m1 + m4 +m7  

Similarly, it may be easily verified that 

f2 = x'yz + xy'z + xyz1 + xyz = m3 + m5+ m6 + m7 

These examples demonstrate an important property of Boolean algebra: Any Boolean function can be 
expresses as a sum of minterms (by "sum" is meant the ORing of terms). 
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Functions of Three Variables 

x y z f1 f2 
0 0 0 0 0 
0 0 1 1 0 
0 1 0 0 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

Now consider the complement of a Boolean function. It may be read from the truth table by 
forming a minterm for each combination that produces a 0 in the function and then ORing 
those terms. The complement of f1 is read as 

f1
’
=x’y’z’ + x’yz’ + x’yz + xy’z + xyz’ 

If we take the complement of f1
’, we obtain the function f1: 

f1 = (x + y + z)(x + y1+ z)(x + y' + z' )(x’+ y + z)(x’ + y' + z) 

= Mo  M2 M3 M5 M6 

Similarly, it is possible to read the expression for f2 from the table: 

f2 = (x + y + z)(x + y + z')(x + y’ + z)(x' + y + z) = M0M1.M2M4 

These examples demonstrate a second important property of Boolean algebra: Any Boolean 
function can be expressed as a product of maxterms (by "product" is meant the ANDing of 
terms). The procedure for obtaining the product of maxterms directly from the truth table is as 
follows. Form a maxterm for each combination of the variables that produces a 0 in the 
function, and then form the AND of all those maxterms. Boolean functions expressed as a 
sum of minterms or product of maxterms are said to be in canonical form. 

Sum of Minterms 

Example     Express the Boolean function F = A + B'C in a sum of minterms. The function 
has three variables. A, B, and C. The first term A is missing two variables; therefore: 

A = A (B + B') = AB + AB'  

This is still missing one variable: 

A = AB(C + C') + AB'(C + C') 
= ABC + ABC' + AB'C + AB'C'  

The second term B 'C is missing one variable: 
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B'C = B'C(A + A') = AB'C + A'B'C  

Combining all terms, we have  

       F=A+B'C 

= ABC + ABC' + AB'C 4- AB'C' + AB'C + A'B'C 

But AB'C appears twice, and according to theorem (x + x == x), it is possible to remove one 
of them. Rearranging the minterms in ascending order, we finally obtain 

F = A'B'C + AB'C' + AB'C + ABC' + ABC 
                   = m1 + m4 +m5+ m6 +m7 

It is sometimes convenient to express the Boolean function, when in its sum of minterms, in 
the following short notation: 

F(A,B,C) ==Σ(1,4,5,6,7) 

An alternate procedure for deriving the minterms of a Boolean function is to obtain the truth 
table of the function directly from the algebraic expression and then read the minterms from 
the truth table. Consider the Boolean function: 

F = A + B'C 

The truth table shown in the following Table can be derived directly from the algebraic 
expression. 

Truth Table for F = A + B'C 

A B C F 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 1 
1 1 1 1 

Product of Maxterms 

Each of the 22n functions of n binary variables can be also expressed as a product of 
maxterms. To express the Boolean function as a product of maxterms, it must first be brought 
into a form of OR terms. This may be done by using the distributive law, x + yz = (.x + y)(x + 
z). Then any missing variable e.g. x in each OR term is ORed with xx'.  

Example: Express the Boolean function F =xy' + yz in a product of maxterm form. 

 F = xy' + yz = (xy' + y)(xy' + z) = (x + y)(y' + y)(x + z)(y' + z) 
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 = (x + y)(x + z)(y' + z) = (x + y + zz')(x + yy' + z)(xx' + y' + z) 
 = (x + y + z)(x + y + z')(x+y + z)(x + y' + z)(x + y' + z)(x'+y'+z) 
 = (x + y + z)(x + y + z') (x + y' + z) (x'+y'+z) 
 = M0 M1 M2 M6 
 = Π (0,1,2,6) 
 We used the distributive law to express in a product of sums. 
 We omitted repeated terms. 
 We completed each term by ORing the missing variable. 
 We can easily use the truth table to reach to a similar result: 

x y z xy'  yz F  
0 0 0 0 0 0 M0 
0 0 1 0 0 0 M1 
0 1 0 0 0 0 M2 
0 1 1 0 1 1  
1 0 0 1 0 1  
1 0 1 1 0 1  
1 1 0 0 0 0 M6 
1 1 1 0 1 1  

 In the next chapter you will learn how to use Karnaugh map to reach the same result. 

STANDARD FORMS 

Another way to express Boolean functions is in standard form. In this configuration, the 
terms that form the function may contain one, two, or any number of literals. There are two 
types of standard forms: the sum of products (SOP) and product of sums (POS). 

The sum of products is a Boolean expression containing AND terms, called product terms, of 
one or more literals each. The sum denotes the ORing of these terms. An example of a 
function expressed in sum of products is F = xy + z +xy'z'. A product of sums is a Boolean 
expression containing OR terms, called sum terms. Each term may have any number of 
literals. The product denotes the ANDing of these terms. An example of a function expressed 
in product of sums is 

F = z(x+y)(x+y+z) 

A Boolean function may be expressed in a nonstandard form. For example, the function 

F = x  (xy' + zy) 

is neither in sum of products nor in product of sums. It can be changed to a standard form by 
using the distributive law to remove the parentheses: 

F = xy' + xyz' 
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Questions  

Choose the correct answers in the following questions. 

1. What function is implemented by the circuit shown 

 

i. x'y'+z ii.  (x'+y')z 

iii. x'y'z iv. x'+y'+z 

v. NA  

2. What function is implemented by the circuit shown 

 

i. x+y+z ii. x+y+z' 
iii. x'y'z iv. x'+y'+z' 
v. NA  

3. What function is implemented by the circuit shown 

 

i. xz'+y ii. xz+y 
iii. x'z+y' iv. x'y'+y'z' 
v. x'y'+y'z  

4. Which gate is the following circuit equivalent to?  

 

i. AND ii. OR 
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iii. NAND iv. NOR 
v. None of the above  

5. Which of the following functions equals the function: f=x+yz' ?  

i. x(y'+z) ii. x(y'+z) 
iii. (y+x)(z'+x) (y+x')(x'+z') iv. NA 

6. Any possible binary logic function can be implemented using only.  

i. AND ii. OR 
iii. NOT iv. AA (anyone is sufficient) 
v. NAND  

7. The function in the following circuit is:  

 

i. abcd ii. ab+cd 
iii. (a+b)(c+d) iv. a+b+c+d 
v. (a'+b')(c'+d')  

8. Given F=A'B+(C'+E)(D+F'), use de Morgan's theorem to find F'.  

i. ACE'+BCE'+D'F ii. (A+B')(CE'D'F) 
iii. A+B+CE'D'F iv. ACE'+AD'F+B'CE'+B'D'F 
v. NA  

9. The function in the following circuit is:  

 

i. x'+y'+z' ii. x+y+z 
iii. x'z'+y'z' iv. xy+z 
v. z  

10. Try Harder Simplify the following: 

i. {[(AB)'C]'D}' ii. (A'+B')C+D' 
iii. (A+B')C'+D' iv. A'+(B'+C')D 
v. A'+B'+C'+D' vi. A+B+C+D 
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11. Using Boolean algebra, simplify the following expressions as much as possible: 

i. (A + B')(A+C) ii. A'B+A'BC'+A'BCD+A'BC'D'E 

iii. AB+ CAB +A iv. ABC[AB+ C (BC+AC)] 
v. (A'+C)(A'+C')(A+B+C'D) 

12. Apply DeMorgan's theorems to each expression: 

i. )DC(BA   

ii. EF)AB(CD   

iii. )DCBA)(DCBA(   

iv. )HG)(FE()DC)(BA(   

13. Given the following Boolean function: 

F = xy'z+x'y'z+w'xy+wx'y+wxy 

i. Obtain the truth table of the function. 
ii. Draw the logic diagram using the original Boolean expression. 

iii. Simplify the function to a minimum number of literals using Boolean algebra. 
iv. Obtain the truth table of the function from the simplified expression and show that5 it 

is the same as the one in part (i). 
v. Draw the logic diagram from the simplified expression and compare the total number 

of gates with the diagram of part (ii). 

14. Express the following functions in a sum of minterms and a product of maxterms? 

i. F(A,B,C,D) = B'D + ACD + BD' 
ii. F(A,B,C,D) = (A+B'+C)(BC+D) 

iii. F(A,B,C,D) = A'B'C+BD 

15. convert the following to the other canonical form. 

i. F(A,B,C) = Σ(0,1,5) 
ii. FF(A,B,C,D) = Π(1,2,6,7,8,9,13) 
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CHAPTER 4 

THE KARNAUGH MAP 

The Karnaugh map represents a systematic method for simplifying Boolean expressions and 
can provide the simplest SOP or POS expression possible. It is similar to a truth table because 
it represents all the possible values of inputs and outputs. It is an array of cells in which each 
cell represents a binary value of the inputs. The cells are arranged in a matter so that 
simplification of a given expression is simply a question of properly grouping adjacent cells. 

THE THREE VARIABLE KARNAUGH MAP 

 

The three variable Karnaugh map contains 8 cells. Each one represents a minterm as shown in 
figure. The value of a given cell is the value of x at each row combined with the values of yz 
at each column. Note that the cells are not arranged in order. They are arranged in a way such 
that there is a difference in only one variable between any two adjacent terms. e.g. xyz is 
adjacent to x'yz. The map is considered to wrap in both column and row, i.e. the first column 
is adjacent to the last one (this applies to rows too in larger maps). The choice of this 
arrangement of cells is to ensure efficient simplification using the map as will be clear soon. 

THE FOUR VARIABLE KARNAUGH MAP 
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The 4-variable map is similar to the 3-variable one, but the number of cell increases to be 16 
instead of 8 due to the increase in minterms.  The map shown represents the cells of a 4 
variable map wxyz where w is the most significant bit and x is the least significant one. 

Karnaugh Map Simplification of SOP Expressions 

The process that results in an expression containing the fewest possible terms with the fewest possible 
variables is called minimization. After an SOP expression has been mapped, there are three steps in 
the process of obtaining a minimum SOP expression: grouping the 1s, determining the product term 
for each group, and summing the resulting product terms. 

Grouping the 1s You can group 1s on the Karnaugh map according to the following rules by 
enclosing those adjacent cells containing 1s. The goal is to maximize the size of the groups 
and to minimize the number of groups. 

1. A group must contain either 1, 2, 4, 8, or 16 cells. In the case of a 3-variable map, eight 
cells is the maximum group (16 is max for 8 variables). 

2. Each cell in a group must be adjacent to one or more cells in that same group, but all cells 
in the group do not have to be adjacent to each other. 

3. Always include the largest possible number of 1s in a group in accordance with rule 1. 
4. Each 1 on the map must be included in at least one group. The 1s already in a group can be 

included in another group as long as the overlapping groups include noncommon 1s. 

Determining the Minimum SOP Expression from the Map  

The following rules are applied to find the minimum product terms and the minimum SOP 
expression: 

1. Group the cells that have 1s. Each group of cells containing 1s creates one product term 
composed of all variables that occur in only one form (either uncomplemented or 
complemented) within the group. Variables that occur both uncomplemented and comp 
lemented within the group are eliminated. These are called contradictory variables. 

2. Determine the minimum product terms for each group. 

(a) For a 3-variable map: 

(1) A 1-cell group yields a 3-variable product term 
(2) A 2-cell group yields a 2-variable product term 
(3) A 4-cell group yields a 1-variable term 
(4) An 8-cell group yields a value of 1 for the expression 

(b) For a 4-variable map 

(1) A 1-cell group yields a 4-variable product term 
(2) A 2-cell group yields a 3-variable product term 
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(3) A 4-cell group yields a 2-variable product term 
(4) An 8-cell group yields a 1-variable term 
(5) A 16-cell group yields a value of 1 for the expression 

3. When all the minimum product terms are derived from the Karnaugh map, they are 
summed to form the minimum SOP expression. 

EXAMPLE 

Simplify the Boolean expression:   F(x,y,z) = Σ (0,1,6,7) 
Solution 

              

 

EXAMPLE:   

Simplify the Boolean expression:      F(x,y,z) = Σ (0,2,5,7) 

SOLUTION 

          

EXAMPLE:   

Group the 1's in each of the following Karnaugh maps: 
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KARNAUGH MAP PRODUCT OF SUM (POS) 
SIMPLIFICATION 

The minimized Boolean functions derived from the map in all previous examples were 
expressed in the sum of products form. With a minor modification, the product of sums form 
can be obtained. 

The procedure for obtaining a minimized function in product of sums follows from the basic 
properties of Boolean functions. The 1's placed in the squares of the map represent the 
minterms of the function. The minterms not included in the function denote the complement 
of the function. From this we see that the complement of a function is represented in the map 
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by the squares not marked by 1's. If we mark the empty squares by 0's and combine them into 
valid adjacent squares, we obtain a simplified expression of the complement of the function, 
i.e., of F'. The complement of F' gives us back the function F. Because of Demorgan's 
theorem, the function so obtained is automatically in the product of sums form.  

EXAMPLE  

Simplify the following Boolean function in (a) sum of products and (b) product of sums. 

F(w,x,y,z) = Σ (0,1,2,3,10,11,14)  

.EXAMPLE 

Use a Karnaugh map to minimize the following POS expression. 

(x+y+z)(w+x+y'+z) (w'+x+y+z') (w+x'+y+z) (w'+x'+y+z) 

solution:  The first term must be expanded to get a POS expression: 

 

(w+x+y+z)(w'+x+y+z)(w+x+y'+z)(w'+x+y+z')(w+x'+y+z)(w'+x'+y+z) 

=Π(0,8,2,9,4,12) 

A zero is placed in the map at the location of each maxterm. The zeroes are grouped to get F' 
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DON'T CARE CONDITIONS 

Sometimes a situation arises in which some input variable combinations are not allowed. For 
example, recall that in the BCD code, there are six invalid combinations: 1010, 1011, 1100, 
1101, 1110, and 1111. Since these unallowed states will never occur in an application 
involving the BCD code, they can be treated as "don't care" terms with respect to their effect 
on the output. That is, for these "don't care" terms either a 1 or a 0 may be assigned to the 
output; it really does not matter since they will never occur. 

The "don't care" terms can be used to advantage on the Karnaugh map. The following figure 
shows that for each "don't care" term, an X is placed in the cell. When grouping the 1's, Xs 
can be treated as 1's to make a larger grouping or as 0s if they cannot be used to advantage. 
The larger a group, the simpler the resulting term will be. Be careful do not make a group 
entirely of x's. 

The following truth table describes a logic function that has a 1 output only when the BCD 
code for 7, 8, or 9 is present on the inputs. Taking advantage of the "don't cares" and using 
them as 1's, the resulting expression for the function is w + xyz, as indicated. If the "don't 
cares" are not used as 1s, the resulting expression is w'xyz + wx'y'. So you can see the 
advantage of using "don't care" terms to get the simplest expression. 

Inputs Output 
x y y w Y 
0 0 0 0 0 
0 0 0 1 0 
0 0 1 0 0 
0 0 1 1 0 
0 1 0 0 0 
0 1 0 1 0 
0 1 1 0 0 
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0 1 1 1 1 
1 0 0 0 1 
1 0 0 1 1 
1 0 1 0 X 
1 0 1 1 X 
1 1 0 0 X 
1 1 0 1 X 
1 1 1 0 X 
1 1 1 1 X 

 

  

EXAMPLE:  Simplify the following Boolean function F, where d represents the set of do 
not care conditions. 

F(w,x,y,z) = Σ (0,1,2,8,10,11) 
d(w,x,y,z) = Σ (4,6,12,13) 
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QUESTIONS: 

1. Simplify the following Boolean functions using three-variable maps: 

(a) F(x.y.z) =Σ (0,1,5,7) (b) F(X,Y,Z) = Σ (1,2,3,4,7) 
(c) F(A,B,C) = Σ (3, 5,6,7) (d) F(A,B,C) = Σ (0,2,3,4,6) 

2. Simplify the following Boolean expressions using three-variable maps:  

 (a) xy + x'y'z' + x'yz'  (b} x'y' + yz + x'yz'  
(c) A'B + BC' + B'C'  

3. Simplify the following Boolean functions using four-variable maps:  

(a) F(A, B, C, D) = Σ (4, 6, 7, 15) 
(b) F(w, X, y, z) = Σ (2, 3, 12, 13, 14, 15) 
(c) F(A, B, C, D) = Σ (3, 7, 11, 13, 14, 15) 

4. Simplify the following Boolean functions using four-variable maps:  

 (a) F{w, x, y,z) = Σ (1, 4, 5, 6, 12, 14, 15) 
(b) F(A, B, C, D) = Σ (0, I, 2, 4, 5, 7. 11. 15) 
(c) F(w, x, y, z) = Σ (2, 3, 10, 11, 12, 13, 14, 15) 
(d) F(A, B, C, D) = Σ (0, 2. 4, 5, 6, 7, 8, 10, 13, 15) 

5. Simplify the following Boolean expressions using four-variable maps:  

 (a) w'z + xz + x' y + wx'z 
(b) B'D + A'BC' + AB'C + ABC' 
(c) AB'C + B'C'D'+ BCD + ACD'+ A'B + A'BC'D 
(d) wxy + yz + xy' + x'y 

6. Find the minterms of the following Boolean expressions by first plotting .each function in 
a map 

 (a) xy + yz + xy'z 
(b) C'D + ABC'+ ABD'+ A'B'D 
(c) wxy + x'z' + w'xz 

7. Simplify the following Boolean functions:  

 (a) F(w, X, y. z) = Σ (0, 2, 4, 5, 6, 7, 8, 10, 13, 15) 
(b) F(A, B, C, D) = Σ (0, 2, 3, 5, 7, 8. 10, 11, 14, 15) 
(c)F(A,B,C,D)= Σ (l,3,4,5.10,11,12,13,14,15) 

8. Simplify the following Boolean functions using five-variable maps:  

(a) F(A, B, C, D, E) = Σ (0, 1, 4, 5, 16, 17. 21, 25, 29) 
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(b) F(A, B, C, D, E) = Σ (0. 2, 3, 4, 5, 6, 7, 11, 15. 16, 18, 19, 23, 27, 31) 
(c) F = A'B'CE' + A'B'C'D' + B'D'E' + B'CD' + CDE' + BDE'' 

9. Simplify the following Boolean functions in product of sums:  

 (a) F(w, X, y,z) = Σ (0, 2, 5, 6, 7. 8, 10) 
(b) F(A, B, C, D) = Σ (l, 3, 5, 7. 13, 15) 
(c) F(x,y,z)= Σ (2.3,6,7) 
(d) F(A, B, C, D) =Π (0, 1, 2, 3, 4, 10, 11) 

10. Use a Karnaugh map to simplify each expression to minimum POS form: 
(a) (A+B+C)(A'+B'+C')(A+B'+C) 
(b) A(B+C')(A'+C)(A+B'+C)(A'+B+C') 
(c) (X+Y')(W+Z')(X'+Y'+Z')(W+X+Y+Z) 
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CHAPTER 6 

Sequential Logic and Flip-Flops 

INTRODUCTION 

The logic circuits you have previously studied have considered mainly of logic gates 

(AND, OR, NAND, NOR, INVERT) and combinational logic. 

Starting in this chapter, we will deal with data storage circuits that will latch onto 

(remember) a digital state (1 or 0).  This new type of digital circuits is called sequential 

circuit, because it is controlled by and is used in controlling other circuitry is a certain 

sequence according to a control clock. 

SEQUENTIAL CIRCUITS AND FEEDBACK: 

Figure (1) shows a diagram of a sequential circuit and of a combinational one. It is 

obvious that the main difference between both circuits is the feed back path between the 

output and the input, present only in the sequential circuit. This beed back path makes the 

output of the network depend on both the present input plus the previous input. This gives the 

network the chance to have a memory about its previous output. While the output of the 

combinational circuit depends only on the combination of inputs. 

EXAMPLE 1: 

Which of the two circuits in Fig (2) is sequential, and which is combinational? Give 
reasons to your answer. 
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Solution:  

The circuit in Fig (a) is combinational and its function is: OUT = A B C.  It is obvious that the 
output depends only on the combination of inputs and it does not depend on the previous 
inputs.  The circuit in Fig (b) is sequential and its function is: OUT(t+1) = A B OUT(t) C.  It 
is obvious that the output depends on both the current inputs and on the previous output.  So, 
it is a sequential circuit. 

 

 

SET- RESET (S-R) LATCHES : 

Cross- NOR S-R latch ( active high ) 

The Set-Reset (S-R) latch is a data storage device. It can be constructed either by 

cross- coupling two NAND gates or two NOR gates.  Fig (3) Shows an S-R latch with two 

NOR gates. 

 

To analyze this circuit, start with the truth table of the NOR gate. 
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A B C 
0 
0 
1 
1 

0 
1 
0 
1 

1 
0 
0 
0 

      Table[1] 

It is obvious that if any of the inputs of the NOR gate is high (logic 1), the output is low 

(logic 0). So, we always start the analysis with the logic 1 input. 

i. If S = 1, R = 0 

 (set condition). 

 S = 1 will make the output of the lower NOR gate Q  = 0. 

 Q  is fed back to the upper NOR gate. R = 0 and Q  = 0 will make the output of the upper 

NOR gate Q = 1. 

 Q is also fed back to the lower NOR. S = 1 and Q = 1 will make the output of the lower 

NOR stable at 0 ( Q  = 0 ).  Therefore, the circuit will latch in the set situation. 

ii.  if  S = 0,  R = 1  (Reset condition). 

 R = 1 will make the output of the upper NOR gate Q = 0. 

 Q is fed back to the lower NOR gate. S = 0 and Q = 0 will make the output of the lower 

NOR gate Q  = 1. 

 Q is also fed back to the upper NOR gate. R=1 and Q  =1 will make the output of the 

upper NOR stable at 0 (Q = 0). Therefore, the circuit will latch in the reset situation. 

iii. If S = 0 , R = 0  ( No change condition ) 
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  If the circuit is previously set SR = (1,0), and the 1 is removed from the S input; i.e. ; SR 

= 00 ; then the circuit should remember that it is set  ( Q = 1 , Q  = 0 ). (Fig(4.a))  

 

 Q = 1 is fedback to the lower NOR. S = 0 and Q = 1 will make the output of the lower 

NOR Q = 0. 

 Q = 0 is fedback to the upper NOR gate. R = 0 and Q = 0 will make the output of the 

upper NOR gate Q = 1. 

 Therefore, the circuit holds at the set position even after removing 1 from S. 

 If the circuit is previously reset SR = 01, and the 1 is removed from the R input; i.e. ; SR = 

00; then the circuit should  remember that it is reset ( Q = 0 , Q  = 1 ) as shown in Fig 

(4.b).  

iv.  If S = 1 , R = 1 ( Forbidden condition ) 

* When both S and R inputs are high the output of both NORs will be Zero ; Q = 0, Q =0 as 

shown in Fig ( 5) . 
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 This condition is forbidden ( not allowed or, race ) because it makes both outputs equal 

which is undesired situation.  Another problem encountered when SR = 11, is that if we 

return to the no-change condition SR = 00 after the forbidden condition SR = 11 we will 

get unpredictable result.  This is known as the race situation. 

 If we go from SR = 11 to SR = 00, then we may have two cases. 

Case 1: R changes first: SR = 10 then  SR = 00  

Case 2: S changes first: SR = 01 then  SR = 00 

Case 1  Case 2 
 S R Q   S R Q 

t0 1 0  t0 1 1 0 

t1 0 1  t1 0 1 0 

t2 0 1  t2 0 0 0 

                 Table[2]          

 

 

 

    Table[3] 

 It is obvious that the output of the circuit depends on which input reaches 0 first. That is 

why we call it the race condition. 

 The function table of the NOR S-R latch is: 

R S Q Q  Comments 

0 

0 

1 

1 

0 

1 

0 

1 

Q 

1 

0 

0 

Q  

0 

1 

0 

No change ( hold ) condition 

Set. 

reset 

Forbidden, Not used , race. 

 

      Table[4] 
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Cross- NAND S-R latch . ( active low ). 

An S-R latch can be made from cross – NAND gates ( Fig. 6 ). It has similar function to the 

NOR latch, but the inputs are active low. It is some times called S - R  latch. 

The truth table of NAND gate . 

A B C 
0 
0 
1 
1 

0 
1 
0 
1 

1 
1 
1 
0 

      Table[5] 

 The key in analyzing this circuit is that if any of the inputs at the NAND gate is 0, then 

the output is 1 regardless of the other input . So, we start the analysis by active low (0) 

input. 

 The key in analyzing the previous circuit is that if any of the inputs  al the NAND gate 

is 0, then the output is 1 regardless of the other input . So, we start the analysis by active 

low ( 0 ) input. 

 Analyze the previous circuit in a similar way to the NOR latch, you will reach to the 

following  . Function table. 

Functions table of the NAND latch . 

R S Q Q  Comments 

0 0 1 1 Forbidden, not uset, race 
0 1 0 1 Reset 
1 0 1 0 Set 
1 1 Q Q  Nochange (hold) condition 
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 Table[6] 

QUESTION: 

If we put an inverter at both S and R inputs as shown in Fig (7), analyze the resulting circuit 

and determine its function table. 
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The symbol used for an S – R latch is shown in  Fig ( 8 )  

 

 

 

 

 

EXAMPLE 2: 

What is the function table for the feedback circuit shown in Fig. (9)? Can it work as a flip-flop 
or not? Give reasons. 

 

Solution:  

1-X = 0, Y = 0    (X is active low.  Y is active high) 
X = 0 → Q = 1 
Q = 1, Y = 0 → P = 0 

2-X = 0, Y = 1 
X = 0 → Q = 1 
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Y = 1 → P = 0 
3-X = 1, Y = 1 

Y = 1 → P = 0 
P = 0, X = 1 → Q = 1 

4-X = 1, Y = 0 
If: Q (t) = 1, Y = 0 → P (t+1) = 0 

P (t+1) = 0, X = 1 → Q (t+1) = 1 

This circuit can not work as a flip-flop because it has only one stable state (P = 0 and Q = 1).  

Its function table Is shown in below: 

X Y Q P 
0 0 1 0 
0 1 1 0 
1 0 1 0 
1 1 1 0 

       Table[7] 

EXAMPLE3: 

In the previous circuit what will happen if it initially started with Q = 0? 

Solution: 

The only change will happen in the fourth case (X = 1 and Y = 0) which represents the no-
change condition. If Q (t) = 0 and Y = 0, then P (t+1) = 1.  If P (t+1) = 1 and X = 1 then Q 
(t+1) = 0.  So, the circuit will remain in this state (Q P = 0 1) until any of its inputs (X or Y) 
changes then it goes to the state (Q P = 1 0), and remains in this state. 

S – R Timing Analysis : 

By performing a timing analysis on the S – R flip–flop, we can see why it is called transparent 

and also observe the latching phenomenon . 

EXAMPLE4: 

If the S and R waveforms shown in Fig (10) are applied to the inputs of the NAND latch, 
determine the waveform that will be applied on the Q output.  Assume that Q is initially low. 
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Solution: See Fig (10). 

R S Q(t+1)  
0 0 * forbidden 
0 1 0 reset 
1 0 1 set 
1 1 Q(t) No-change 

   

     Table [8] 

The function table of the S-R NOR latch (active low) is shown in the previous table.  Initially 
Q = 0, and S = R = 1 (no change).  At time 1, S changes to 0 and R remains 1. The latch sets 
and Q = 1.  At time 2 S = 1 and R changes to 0 (reset) and Q changes to 0.  At time 3 both S 
and R become 1 (no change), and Q is still 1.  This applies to all the points as shown in figure 
(10). 

So the latch sets at points where S changes from 1 to 0 and R = 1.  It resets at points where R 
changes from 1 to 0 and S = 1.  At points where S = R = 1, Q does not change. 

EXAMPLE5: 

If the S and R waveforms shown in Fig (11.a) are applied to the inputs of the NOR latch, 
determine the waveform that will be applied on the Q output.  Assume that Q is initially low. 
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Solution: See Fig (11.b). 

The function table of the S-R NOR latch (active high) is shown in Table (2).  Initially Q = 0, 
and S = R = 0 (no change).  At time 1, S changes to 1 and R remains 0. The latch sets and Q = 
1.  At time 2, S = 0 and R changes to 1 (reset) and Q changes to 0.  At time 3, S changes to 1 
and R remains 0. The latch sets and Q = 1.  This applies to all the points as shown in figure 
(11). 

So the latch sets at points where S changes from 0 to 1 and R = 0.  It resets at points where R 
changes from 0 to 1 and S = 0.  At points where S = R = 0, Q does not change. 

R S Q(t+1)  
0 0 Q(t) No-change 
0 1 1 set 
1 0 0 reset 
1 1 * forbidden 

       Table[9] 

Switch Debouncing Circuits : 

 Switch bounce occurs as a mechanical switch lever snaps to a new position. After 

reaching the new contact point, the pole bounces on a micrometer scale of millisecond 

duration (Fig (12)). Bounce can cause problems in circuits that are expecting an input 

to stabilize without oscillating, such as counters.  

 As shown in Fig (12), if you flip a mechanical SPDT (single Pole double throw) switch to 

a new position, it will bounce a few times before settling. We do not want a counter 

circuit, for exople , to count these bounces. 
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 The S – R debouncer circuit is shown in Fig (13).  

 When the switch is neither connected to the lower pin nor to the upper pin, both S and R  

equal + 5v ( Logic 1 ) and the latch is in the no change state . 

 

 When the switch has the first contact to the upper pin, S  = 0 , R  = 1 and the latch is set . 

If the switch bounces it will not be connected to either pins and the no change state makes 

it stay at the set condition ( Q = 1 , Q = 0 ). 
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 Similarly, when the switch has the first contact to the lower pin,  S = 1 ,  R = 0 and the 

latch is reset ( Q = 0 , Q  = 1).   If the switch bounces, it will not be connected to either 

pins and the no change condition makes Q = 0 , Q  = 1 as before  
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Switch Condition    R   S  Q Q  
Impossible  0 0 * * 
Upper pin contacted 1 0 1 0 
Lower pin contacted 0 1 0 1 
Neither pin contacted 1 1 No change 

Table[10] 

EXAMPLE 6: 

Show how you can construct a switch debouncing circuit using a NOR lath? 

Solution:   

As a single pole double throw (SPDT) switch makes a new contact, it bounces a few times 
before settling.  We do not want a count circuit, for example, to count these bounces.  A latch 
can be used to eliminate this problem by forcing the lath to be in the no-change condition 
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when either pin is connected.  The function table of the latch, which is shown in fig (14), is 
shown in Table [XI]. 

Switch condition S R Q 
Upper pin connected 0 1 0 
Lower pin connected 1 0 1 
Neither pin 
connected 

0 0 No-change 

Impossible 1 1 * 

Table[11] 

In the timing diagram in Fig (14-b), at point A the switch is thrown from position 1 to 
position 2.  The output changes from logic 0 to 1.  If the switch bounces around position 2, the 
latch will be in the no-change condition and the output stays at logic 1. At point B in the 
timing diagram, the switch is thrown from position 2 to position 1.  The output changes from 
logic 1 to 0.  If the switch bounces around position 1, the latch will be in the no-change 
condition and the output stays at logic 0.  Therefore, the switch is debounced at both 
positions. 
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STATE : 

State of a FF or latch is one of two possible stalle conditions for the output. The set state 

where Q = 1 , Q = 0 . The reset state where Q = 0 , Q = 1 . 

Clocked SR latches ( flip – flops ) : 

Simple gate circuits, combinational logic and transparent S-R flip–flops are called 

asynchronous ( not synchronous ) because the output responds immediately to input changes. 

Synchronous circuits operate sequentially , in step , with a control input. To make an S-R flip 

flop synchronous, we add a gated input to enable and disable the S and R inputs. Fig (15) 

shows a gated S – R flip–flop using a cross NOR S – R latch .  
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The operation of the circuit is as follows : 

 When the gate = 0 , both . Ri = 0 . Therefore the latch is in the no. change (hold) 

condition .  

 When the gate = 1, Ri = R and Si = S . The latch behaves as a normal S-R latch . 

 The latch is only transparent when the gate is active ( gate =1) , otherwise it is in the 

hold state and the input ( S,R) has no effect on it . 

 The clocked (gated) latch can also be implemented using cross – NAND gates as 

shown in fig (16) . 

Try to analyze this circuit yourself. The function table of both circuits is as follows. 

Table[12]: Function table of gated flip – flop 

S R Gate Q Q  Comments 

X X 0 Q Q  The gate is open and the flip 

flop is in the no change. 
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0 0 1 Q Q  
No change 

0 1 1 0 1 Reset 

1 0 1 1 0 Set 

1 1 1 * * forbidden 

 

EXAMPLE 7: 

Determine the Q output waveform if the inputs shown in Fig (17-a) are applied to a clocked 

(gated) S-R latch that is initially RESET. 

Solution: The timing diagram of both inputs and the output are shown in Fig (17).  The 

latch changes its state only if the clock is high.  At points 1 and 3, S = 1, R = 0 and clock = 1, 

so the latch sets.  At points 2 and 4, S = 0, R = 1 and clock = 1, so the lath resets.  At all other 

points it does not change its state. The second pulse of S has no effect, because it starts and 

ends while the clock is low. 

 

EXAMPLE 8: 

Determine the Q output waveform if the inputs shown in Fig (18) are applied to a clocked 

(gated) S-R latch that is initially RESET. 
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GATED D latch : 

Another type of flip-flop is the D flip – flop ( Data flip – flop ) . It can be formed from the 

gated S – R latch by the addition of an inverter . This enables just a single input (D) to both 

Set and Reset the latch ( Fig (19) ) . 

 

 When D = 0 , S = 0 and R = 1, the latch is in the reset state and Q = 0 , Q  = 1 . 

 When D = 1 , S = 1 and R = 0, the latch is in the set state and Q = 1 , Q = 0 . 

EXAMPLE 9: 
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Sketch the output waveform at Q for the inputs at D and G of the gated D latch in Fig (20). 

Integrated – circuit D latch ( 7475 ) : 

The 7475 is an example of an integrated – circuit D. latch    ( also called a bistable latch ) . It 

contairs four transparent ( not clocked ) D latches . Its logic symbol and pin configuration are 

shown in figure (21) . Latches 0 and 1 share a common enable ( E 0 –1 ) and latches 2 and 4 

share a common enable ( E 2 – 3 ).  The enables act just like the G-input in the gated D- latch. 

From the function table , we can see that the Q output will follow D (transparent) as long as 
the enable line (E) is HIGH ( called active – HIGH enable ) . When E goes low, the Q output 
will become latched to the value that D was just before the HIGH – to – low transition of E . 
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Function Table For 7475 

Operating Mode Inputs Out puts 

E D Q ( t +1) Q (t +1 )  

Data Enabled 1 0 0 1 

Data Enabled 1 1 1 0 

Data Latched 0 X Q(t) Q (t) 

 

      Table[13] 

EXAMPLE 10: 

Construct a D flip-flop using NOR and AND gates. 

Solution: 
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J–K FLIP – FLOPS : 

 The J.K flip – flop ( Fig ( 23 a ) ) is similar to the S-R flip – flop with Q fed back to be 

ANDed with R and Q  fed back to be ANDed with S . This forces the Forbidden state 

SR = 11 to produce a fourth allowed state called “toggle“. 

i.  J = 0  ,  K = 0  ( no change )  

J = 0 makes S = 0  

and  K = 0makes R = 0 . 

So , this is the no-change ( hold ) condition  

ii. If  J = 0 and 

K = 1 

 ( reset )  

J = 0  makes 

 S = 0 

K = 1 makes  R =  Q(t).  Then we may have one of the following two cases: 

Case a:  if  Q(t) = 0 (initially ) then 

R = 0 

 So, SR= 00(no change) and Q(t+1 )  will stay at 0. 
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Case b:  if Q(t) = 1 (initially ) then 

R = 1 

 So, SR= 01(reset) and Q(t+1 )  will be reset to Q(t+1 ) = 0. 

So in both cases (a)  and ( b) , Q will be reset to 0. 
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iii. If  J = 1 and 

K = 0 

 ( set )  
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J = 1  makes 

 S = Q (t) 

K = 0  makes 

 R =  0.  Then we may have one of the following two cases: 

Case a:  if  Q(t) = 0 (initially ) then 

S = 1 

 So, SR= 10 (set) and Q(t+1) will be set to Q(t+1 ) = 1. 

Case b:  if Q(t) = 1 (initially ) then 

S = 0 

 So, SR= 00 (reset) and Q(t+1 )  will remain at 1. 

So in both cases (a)  and ( b) , Q will be set to 1. 

v- If 

J = 1 and K = 1 

 ( toggle ) 

J = 1 makes 

 S = Q (t). 

K = 1 makesR = Q(t) 

Then we may have one of the following two cases: 

Case a:  if  Q(t) = 0 (initially ) then 

S = 1 and R = 0 (set)

 So, Q(t+1) will be set to 1. 

Case b:  if Q(t) = 1 (initially ) then 

 S = 0 and R = 1 (reset) and Q(t+1 )  will be reset to 0. 

So, the next state will be the toggle (complement) of the present state. 

 The function table of the J. K flip – flop is  
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J K Gate Q(t+1 ) Q (t+1) Comments 

X X 0 Q(t ) Q (t) No-change ( gate is open) 

0 0 1 Q(t ) Q (t) No-change 

0 1 1 0 1 Reset 

1 0 1 1 0 Set 

1 1 1 Q (t) Q(t ) Toggle (complement) 

Table[14] 

T. (TOGGLE) FLIP–FLOP  

 Another type of flip- flop is the T- flip flop. It can be obtained be connecting both J and 

K together. As shown in figure ( 24 . )  

 

The analysis of this circuit is very simple . 

i-  If T = 0, then JK = 00 and the flip-flop is in the no-change state  

ii- If T = 1, then JK = 11 and the  flip – flop is in the toggle state. 

The function table of the flip-flop is : 

T Gate Q(t+1 ) Q (t+1) Comments 
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X 0 Q(t ) Q (t) No-change ( gate is open) 

0 1 Q(t ) Q (t) No-change 

1 1 Q (t) Q(t ) Toggle (complement) 

Table[15] 

MASTER – SLAVE FLIP-FLOPS : 

* In the four types of flip-flops ( S-R, D, J-K, T ) discussed so far the flip-flop is either 

transparent i-e not gated; we referred to transparent flip-flops as latches; or the flip–flop is 

gated. In gated flip=flops, it is only active when the gate is closed ( G = 1 ). This corresponds 

to a circuit that is only active at the HIGH level of the clock . 

* In many applications we want the FF to be active at the edge of the clock rather than at the 

level. (Fig (25))  

The FF active at the clock edge can be achieved by either : 

1- edge – triggered FFs  

2- Master – slave FFs . 
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The block diagram of a J-K Master- slave FF is shown in Fig (26). 

 The master- slave FF can be constructed from any typr of FF by adding a clocked RS 

FF with an inverted clock to form the slave. 

 It consists of two FFS; The 1st is called “master“ and is clocked at the HIGH level of 

the clock. The 2nd is called “ slave” and is clocked at the low level of the clock . 

 The operation of the master-slave flip-flop ( Fig (27) ) is as follows : 

 

1. While the clock is high , the master is active and the slave is inactive . 

2. While the clock is low, the master is inactive and the slave is active.  

As a result data are entered into the flip-flop on the leading edge of the clock pulse, but 

the output does not reflect the input state until the trailing edge. 
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 If a J-K FF is sensitive to the level of the clock ( Fig 28 ) , and J K = 11 , the output of 

the FF will toggle from 0 – 1 – 0 – 1 until the clock returns to the low level . It is not 

exactly known 

whether the out put will 

be 0 or 1 when the 

clock returns to level 0 . 

This condition is 

known as the race 

condition. Using a 

master-slave that triggers 

on the -ve edge ensures 

to eliminate this problem. 

EDGE – 

TRIGGERED J K FFS : 

 With edge triggering, the flip-flop accepts data only on the J and k inputs that are 

present at the active clock edge ( either +ve (leading) or -ve (trailing) edge).  This 

gives the engineer the ability to accept input data on J and K at a precise instant in 

time. The logic symbols for edge – triggered flip-flop use a small triangle at the clock 

input to signify that it is an edge-triggered device (Fig (a,b)). 
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Symbols for edge triggered J – K flip_flop . 

(a) -ve edge triggered  

(b) Tve edge triggered  

EXAMPLE 11: 

- Draw the logic diagram of a master-slave J-K flip-flop using: 

    a- NAND gates     b- NOR AND gates. 

Solution:  

Function table: 

J K Clock Q(t+1) function 
0 0 ↓ Q(t) No-change 
0 1 ↓ 0 reset 
1 0 ↓ 1 set 
1 1 ↓ Q’(t+1) toggle 

Table[16] 
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EXAMPLE 12: 

Determine the Q output waveform if the inputs shown in Fig (30) are applied to a clocked S-R 

flip flop that is initially RESET. The flip-flop is triggered at the positive edge. 

Solution: The clock and the S-R inputs are given and the resulting Q output is shown. We 

take a line at each positive edge of the clock and determine the value of S and R.  So, Q can 

be set, reset or no-change as shown. 

 

Fig (30) 

EXAMPLE 13: 

- Determine the Q output waveform if the inputs shown in Fig (31) are applied to a clocked S-

R flip-flop that is initially RESET. The flip-flop is triggered at the positive edge. 
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EXAMPLE 14: 

- Determine the Q output waveform if the inputs shown in Fig (32) are applied to a clocked S-

R flip-flop that is initially RESET. The flip-flop is triggered at the positive edge. 

 

EXAMPLE 15: 

Draw the logic diagram of a master-slave S-R flip-flop using: 

    a- NAND gates     b- NOR AND gates. 
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Solution:  

 

 

Function table: 

S R Clock Q(t+1) function 
0 0 ↓ Q(t) No-change 
0 1 ↓ 0 reset 
1 0 ↓ 1 set 
1 1 ↓ * forbidden 

 

      Table[17] 

EXAMPLE 16: 

Draw the logic diagram of a master-slave T  flip-flop using:      

a- NAND gates     b-NOR AND gates. 

Solution: 
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Fun
ctio
n 
tabl
e: 

T Clock Q(t+1) function 
0 ↓ Q(t) No-change 
1 ↓ Q’(t+1) toggle 

Table[18] 

MASTER-SLAVE FLIP-FLOP AND 1S CATCHING: 

 

 The timing diagram in figure (36) illustrates the 1s catching phenomena in master-

slave  SR flip-flops shown on figure (35). 
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 At time (a), the SET (S) input goes high and returns back to low at (b).  This pulse 

occurs before the negative edge of the clock and should not affect the output.  But, that is 

not what really happens because the master output QM will go HIGH at point a (the 

master catches this unwanted pulse).  At point (b), S returns to LOW (SR = 00), the flip-

flop holds to QM = 1.  At the negative edge of the clock, (c), the master output is still 

HIGH, which is the input to the slave.  So, at point (d) the output of the slave goes HIGH 

too. 

 Briefly: The master catches the HIGH pulse while the clock is inactive, and fed it to the 

slave at the active (-ve) edge of the clock. 

 The problem is repeated for the HIGH (level 1) pulse (starting at point e) at the RESET 

input.  The master catches this reset pulse and causes the slave to RESET at point (f), 

even though the reset pulse is not present at point (f). 
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EXAMPLE 17: 

A J-K master – slave level sensitive flip-flop, has the J, K and clock waveforms shown on 

fig (37). Draw what you expect the out waveform to look like. The second J pulse is an 

example of 1s catching. Why do you think it has that name? What J or K puls would 

produce 0s – catching ? The out put was originally low. 
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Solution : 

The timing diagram of both QM & QS are shown on figure(37) . It is obvious that pulse ( 2) on 

the K input is an example of 0s – catching – pulse ( 3) on the J in put is an example of 1s 

catching . 

 Analyze he circuit yourself : 

DIRECT ( ASYNCHRONOUS ) INPUTS : 

For the clocked flip-flops just discussed, the S-R, D, J-K and T inputs are called synchronous 

inputs because data on these inputs are transferred to the flip-flop’s output only on the 

triggering edge of the clock pulse; that is, the data are transferred synchronously with the 

clock. 

Most IC flip-flops also have asynchronous inputs. These are inputs that affect the state of the 

flip-flop independent of the clock . 
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They are normally labeled preset ( PRE) and clear ( CLR), or direct set ( SD) and direct 

reset ( RD) by some manufactures. 

An active level on the preset input will SET the flip-flop, and an active level on the clear 

input will RESET it (fig ( 38) ) . 

PRE  CLR  Q 

0 0 HI, but unstable 

0 1 1 

1 0 0 

1 1 Clocked operation 

Table[19] 

 The direct inputs are active low, they must both be kept HIGH for synchronous operation. 

 FIG (39) shows the logic diagram for an edge triggered J-K flip-flop with active- low 

PRE  and CLR  inputs. 
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 This figures illustrates basically how these inputs work. They are connected so that they 

override the effect of the synchronous inputs, ( J, K ) and the clock. 

EXAMPLE 18: 

 For the +ve edge-triggered J-K flip–flop with preset and clear inputs in figure(40) . 

determine the Q output for the inputs shown in the timing diagram (fig(41)) if Q is 

initially low.  

 

Solution : 

 During pulses 1,2 and 3 , the preset ( PRE ) is low, keeping the FF SET regardless of the 

synchronous J K inputs . 

 Starting with the +ve edge of pulse 4 , the FF toggles this continues for pulses 5 and 6. 

 During pulse 8, the clear is low, keeping the FF RESET regardless of the synchronous J K 

inputs . 
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Question :If you inter change the PRE  and CLR  waveforms ; what will the Q output look 

like ?  

 

FLIP- FLOP OPERATING CHARACTERISTICS  

Propagation Delay times: 

 A propagation delay time is the interval of time required after an input signal has been 

applied for the resulting output change to occur . 

 Several categories of propagation delay are important in the operation of a flip-flop. 

1- Propagation delay TPLH as measured from the triggering edge of the clock pulse to the 

LOW–to-HIGH transition of the output.  This delay is illustrated in figure(42-a). 

2- Propagation delay TPHL as measured from the triggering edge of the clock pulse to the 

HIGH–to-LOW transition of the output.  This delay is illustrated in figure(42-b). 

3- Propagation delay TPLH as measured from the preset input to the LOW–to-HIGH 

transition of the output.  This delay is illustrated in figure (43-a) for an active LOW preset 

input. 
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SET-UP TIME 

The set-up time (ts) is the minimum interval required for the logic levels to be maintained 

constantly on the inputs (J and K, or S and R, or D) prior to the triggering edge of the clock 

pulse in order for the levels to be reliably clocked into the flip-flop.  This interval is illustrated 

in figure (44) for a D flip-flop. 

 

HOLD TIME 

the hold time (th) required for the logic levels to remain on the inputs after the triggering edge 

of the clock pulse in order for the levels to be reliably clocked into the flip-flop.  This interval 

is illustrated in figure (45) for a D flip-flop. 
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QUESTIONS 

1) For the following four problems, feed the specified inputs into the flip-flops, sketch 
the output wave at Q and list the flip-flop functions. The flip-flops are level clocked.  G: 

gate or clock, S and R are the set and reset inputs, D:data input, Cp: clock pulse, 
d

S and 

d
R  are the direct (asynchronous) set and reset respectively. 

 

 

2)  

3)  
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4)  

 

5) Draw the logic diagram of the gated NOR S-R latch.  Explain in details its operation. 
Explain the race condition. 

6) Draw the logic diagram of the gated NAND S-R latch.  Explain in details its operation. 
Explain the race condition. 

7) Draw the logic diagram of a master-slave J-K flip-flop using AND-NOR gates.  
Explain the operation of the master-slave with a timing diagram.  Explain the 1's 
catching problem. 

8) Draw the logic diagram and explain the operation of a master-slave J-K flip-flop using 
NAND gates.  Explain with a timing diagram how the master-slave is used to solve the 
race problem in level clocked J-K flip-flops. 

 

9) Design a switch debouncing circuit using NOR latch.  Explain in details the operation 
of the circuit.  

10) Explain why the S-R latch is called asynchronous and the gated S-R flip-flop is called 
synchronous. 

11) What procedure would you use to reset the Q output of a gated D flip-flop? 
12) For the inputs at D0 and E0-1, in the 7475 D latch, sketch the output waveform at Q0. 
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13) The Q output of the 7475 D latch follows the level of the D input as long as E is ----- 
(low or high). 

14) The Q output of the 74LS76 shown in figure is used to drive an LED. Sometimes 
when the switch is closed the LED toggles to its opposite state but sometimes it does 
not. Discuss the problem cause and a solution to the problem. 

 

 

15) Sketch the Q output in the following master-slave JK flip-flop in relation to the clock. 
Q is initially low. 

 

 

16) Repeat the previous problem for a JK flip-flop that triggers on the positive edge. 
17) Typically a manufacturer’s data sheet specifies four different propagation delay times 

associated with a flip-flop. Name and describe each one. 
18) The datasheet of a certain flip-flop specifies that the minimum HIGH time of the clock 

pulse is 30 ns and the minimum LOW time is 37ns. What is the minimum operating 
frequency? 
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CHAPTER 7 

Sequential Circuit Analysis and Design 

FLIP-FLOP EXCITATION TABLES : 

 When it is required to analyze a sequential circuit, we are given the flip-flop inputs and 

asked to give the corresponding output. 

 To do that, we must know the characteristic table of the give flip-flop. Table [20] shows 

the characteristic table of the four types of flip-flops. 

S R Q(t+1)  D Q(t+1) 

0 0 Q(t)  0 0 

0 1 0  1 1 

1 0 1    

1 1 *    

 

J K Q(t+1)  T Q(t+1) 

0 0 Q(t)  0 Q(t) 

0 1 0  1 )t(Q  

1 0 1    

1 1 )t(Q     

Table [20] : Characteristic ( Function ) tables of  the four types of flip-flops. 

* When it is required to design a sequential circuit the required sequence of input-output of 

the circuit is given (present state – next state of output), and it is required to design the input 

of the flip-flop ( S-R, T , J-K or D ) to give the desired output  

e.g for an S-R sequential circuit: 

design

analysis

(Q(t),Q (t+1)) S-R 
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* The excitation table is the reverse of the function ( characteristic) table of the flip-flop. 

Table [21] shows the excitation table of S-R flip-flop. 

Present 

state 

Next state S R Comments S R Comments 

Q(t) Q(t+1)       

0 0 0 

0 

0 

1 

No change 

or reset 

0 x R is do not care because both R = 0 

and R = 1 give the required Q(t+1) 

0 1 1 0 Set  1 0  

1 0 0 1 Reset 0 1  

1 1 0 

1 

0 

0 

No change 

or set 

x 0 S is do not care because both S = 

0 and S = 1 give the required Q(t+1) 

Table [21] : excitation table of SR flip – flop 

* The excitation tables of all types of flip-flops are shown in table [22] 

Present 

state 

Q(t) 

Next state  

Q(t+1) 

S R  Present 

state 

Q(t) 

Next state  

Q(t+1) 

D 

0 0 0 x  0 0 0 

0 1 1 0  0 1 1 

1 0 0 1  1 0 0 

1 1 x 0  1 1 1 

 

Present 

state 

Q(t) 

Next state  

Q(t+1) 

J K  Present 

state 

Q(t) 

Next state  

Q(t+1) 

T 

0 0 0 x  0 0 0 

0 1 1 x  0 1 1 

1 0 x 1  1 0 1 

1 1 X 0  1 1 0 
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Table [21] : Excitation table of the 4 – types of flip – flops. 

BASIC DEFINITIONS OF SEQUENTIAL CIRCUITS 

Sequential circuit : 

Any digital circuit with memory due to feedback, particularly a circuit with latches or flip-

flops is a sequential circuit. 

State Versus Output: 

The state of a sequential circuit is the set of flip-flop output values at a given time. State is 

generally not the same thing as the circuit output.  

Moore Circuits (Fig (46)) : 

 In a Moore circuit, the outputs are function of the present state only, i.e.; function of 

flip-flops outputs. 

 Some flip-flops outputs may not participate in output at all. Flip-flops that do not 

directly influence the output are described as "Hidden".  For example: a shift register 

where output is taken from the last flip-flop. 
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Mealy Circuits: 

In a Mealy circuit, the output is a function of both the present state and the external inputs 

(Fig (47)). 

 In a Moore circuit, the output is synchronized with the clock because it depends only on 

the flip-flops outputs. 

 In a Mealy circuit, the output may change if the inputs change during the clock – pulse 

period. 

 

Counters 

 A counter is a sequential circuit that goes through a prespecified sequence of states upon 

the application of input pulses. 

 An n-bit counter consists of n- flip-flops and can count in binary from 0 to (2n–1). 
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State Diagram: 

The sequence of states of a sequential circuit, along with the external input and the output of 

the circuit, can be represented graphically using a state diagram. Fig (48) shows an example 

of a state diagram for a 2-bit counter. 

 

 Each oval shape in the state diagram represents one state of the sequential circuit, e.g. 00, 

01, 10, 11. 

 The arrow connecting two states is directed from the present state towards the next state. 

 The label on the arrow represents the value of the input of the circuit that leads to this 

transition. 

 So, in fig (48) when the input (x) = 0 , the state of the network counts from 

00→01→10→11 and then back to 00. 

 If the sequential circuit has an external output; other than the state; it will be labeled on 

the state diagram exactly as the input but in the form ( x / y ) . Where x is the input as 

before, and y is the corresponding output. (Fig (50)). 
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ANALYSIS OF A SEQUENTIAL CIRCUIT : 

EXAMPLE 19: 

Given the sequential circuit shown in Fig (49), analyze this circuit to show the sequence of 

output the circuit produces. 

Solution :  

To analyze any sequential circuit, we go through the following sequence of steps. 

1) From the logic (or block) diagram of the sequential circuit, get the flip-flops input 

functions: 

    RA = B x , SA = B x  , RB = A x  , SB = A x ,  

, also get the output function(s) : 

     Y = A x 

Make the state diagram of the circuit as follows: 

P.S. Input FF FF Inputs N.S. O/p 
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A B X RA SA RB SB A B Y 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

1 

0 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

1 

0 

1 

0 

1 

1 

0 

1 

1 

1 

0 

0 

0 

1 

0 

1 

0 

1 

0 

0 

0 

0 

2. Draw the state diagram for the circuit  

EXAMPLE 20: 

Study the sequential circuit shown in figure(51), and draw its state diagram. 



CHAPTER 7 SEQUENTIAL CIRCUITS  

 

 -134- 

 

 The state of the circuit is QD QC QB QA ,but only QD is output. 

 JA = KA = QA    (QB + QC )  =  QA (QB + QC ) + Q`A (QB + QC )` 

     =  QA Q B + QA QC + Q`A Q`B Q`C  

JB = QA  KB =  Q`A 

JD = QC  

 KD =  Q`C

  

JC = QB   KC =  Q`B 

 State table : 

  

 

 

 

 

 

  

Present state next state Flip-flops inputs 

QD QC QB QA QD QC QB QA JD KD JC KC JB KB JA=KA 

0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 



CHAPTER 7 SEQUENTIAL CIRCUITS  

 

 -135- 

0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 

0 0 1 0 0 1 0 0 0 1 1 0 0 1 0 

0 0 1 1 0 1 1 0 0 1 1 0 1 0 1 

0 1 0 0 1 0 0 0 1 0 0 1 0 1 0 

0 1 0 1 1 0 1 0 1 0 0 1 1 0 1 

0 1 1 0 1 1 0 0 1 0 1 0 0 1 0 

0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 

1 0 0 0 0 0 0 1 0 1 0 1 0 1 1 

1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 

1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 

1 0 1 1 0 1 1 0 0 1 1 0 1 0 1 

1 1 0 0 1 0 0 0 1 0 0 1 0 1 0 

1 1 0 1 1 0 1 0 1 0 0 1 1 0 1 

1 1 1 0 1 1 0 0 1 0 1 0 0 1 0 

1 1 1 1 1 1 0 0 1 0 1 0 1 0 1 

 State diagram 

 The repeating cycle does not include the reset state 0000. 
 The output (QD) is: 

QD = 0 000 11 00011 00011 …. With four 0s at the RESET  start. 
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Analysis of synchronous counters 

EXAMPLE 21: 

Starting at QC QB QA = 000, what sequence does the synchronous circuit of three D flip-flops 

shown in figure(53) step through ? 
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FF input (excitation) functions  

DA = Q A  

DB = QC  QA  + QB Q A + QB Q C = QA Q C  + Q A QC + Q A QB + QB Q C  

DC  = QB  (QA  QC ) = QA Q C QB + Q A QC QB 

 

State table : 

Present state Next state FF inputs 

QC QB QA QC QB QA DC DB DA 

0 
0 
0 
0 
1 

0 
0 
1 
1 
0 

0 
1 
0 
1 
0 

0 
0 
0 
1 
0 

0 
1 
1 
1 
1 

1 
0 
1 
0 
1 

0 
0 
0 
1 
0 

0 
1 
1 
1 
1 

1 
0 
1 
0 
1 
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1 
1 
1 

0 
1 
1 

1 
0 
1 

0 
1 
0 

0 
1 
0 

0 
1 
0 

0 
1 
0 

0 
1 
0 

0 
1 
0 

The resulting sequence of states is : 

QC QB QA Decimal val. 

0 

0 

0 

0 

1 

1 

0 

0 

1 

1 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

2 

3 

6 

7 

and then it repeats the sequence. 

State diagram : 
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DESIGN OF SEQUENTIAL CIRCUITS : 

EXAMPLE 21: 

Design a clocked sequential circuit with the given state diagram. Use JK flip-flops. 

1. State diagram : 
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2. Excitation table : 

Present state Input Next state F.F. inputs 

A B X A B JA KA JB KB 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

1 

1 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

0 

1 

0 

0 

1 

0 

1 

1 

1 

0 

0 

1 

0 

1 

0 

1 

1 

0 

0 

0 

1 

0 

x 

x 

x 

x 

x 

x 

x 

x 

0 

0 

0 

1 

0 

1 

x 

x 

0 

1 

x 

x 

x 

x 

1 

0 

x 

x 

0 

1 

3- Karnaugh map 

  X                 

    1  x x x x   1 x x  x x  1 

A x x x x    1    1 x x  x x 1  

   B                

JA = B X  

KA = B X 

JB = X 

  

 KB=XA+ A X  

 

 

 

 

 

 

       = A X   

4-Logic diagram: 
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Design with unused states : 

mflip flops

 

 2m      states  

As we know that a circuit with m flip-flops can produce up to 2m  states. In some 

sequential circuits not all these states are used.  For example, a counter circuit that goes 

through the repeated sequence 0,3,6,9.  This circuit is implemented using four flip-flops that 

can produce up to sixteen states (0-15).  So, the  twelve remaining states 

(1,2,4,5,7,8,10,11,12,13,14,15) are considered as unused states.   

EXAMPLE 22 

Design a sequential circuit to satisfy the state diagram shown in figure(57).  Use SR flip-

flops.  Treat the unused states as do not care conditions. 

Solution: 

1. state diagram 

see fig (57) 
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3. Excitation table : 

The excitation table of the SR flip-flop is as follows: 

Q(t) Q(t+1) S R 

0 0 0 x 

0 1 1 0 

1 0 0 1 

1 1 x 0 

 

Use this table and the given state diagram to reach to the following excitation table: 

 Present state Input Next state F.F inputs output 

 A B C X A B C SA RA SB RB SC RC Y 

2 

3 

4 

5 

6 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

0 

0 

1 

0 

1 

0 

1 

0 

0 

0 

0 

1 

0 

0 

1 

1 

0 

0 

1 

0 

1 

0 

1 

0 

0 

0 

1 

0 

x 

x 

x 

0 

x 

0 

1 

x 

0 

0 

x 

0 

0 

1 

1 

x 

0 

1 

0 

x 

0 

1 

0 

x 

0 

0 

0 

0 

0 

0 
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7 

8 

9 

10 

11 

0 

1 

1 

1 

1 

1 

0 

0 

0 

0 

1 

0 

0 

1 

1 

1 

0 

1 

0 

1 

1 

1 

1 

0 

1 

0 

0 

0 

0 

0 

0 

1 

0 

1 

0 

1 

x 

x 

0 

x 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

1 

x 

x 

x 

x 

0 

1 

0 

x 

0 

1 

0 

x 

0 

1 

0 

0 

1 

0 

1 

4- use the previous table to draw a Karnaugh map for each input of the flip flops taken into 

consideration the unused states. 

Unused states 

A B C X 
0 
0 
1 
1 
1 
1 

0 
0 
1 
1 
1 
1 

0 
0 
0 
0 
1 
1 

0 
1 
0 
1 
0 
1 

 

  X                  

 x x     x x x x  x x 1   x x  x 

  1 1   

B 

 x   x  x      1 1 1 

A x x x x  x x x x  x x x x  x x x x 

 x x x       1       x x x x 

   C                 

SA = B X                  RA = C X           SB = BA X         RB=BC+BX 

  X              

 x x  x   x x 1   x x    

 1   x  

B 

  x 1        

A x x x x  x x x x  x x x x  

 1   x    x 1    1 1   

   C             
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SC = X  RC = X Y =  A X 

5- The resulting logic diagram is shown in figure (58): 

 

Example 23: 

 Analyze the sequential circuit obtained and determine the effect of the unused states. 

Solution: 

 The unused states are : 000 , 110 , 111.  We can solve this problem like any analysis 

problem. 

1-  Flip-flops input functions: 

SA = B X  RA = C X  SB = BA X  

RB =  BC+ BX SC = X  RC = X  

Y =  A X 

2-   Draw the state table of the unused states: 
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State table: 

Present state Input Next state Output F.F inputs 
A B C X A B C Y SA RA SB RB SC RC 
0 
0 
1 
1 
1 
1 

0 
0 
1 
1 
1 
1 

0 
0 
0 
0 
1 
1 

0 
1 
0 
1 
0 
1 

0 
0 
1 
1 
0 
1 

0 
1 
1 
0 
0 
0 

1 
0 
1 
0 
1 
0 

0 
0 
0 
1 
0 
1 

0 
0 
0 
1 
0 
1 

0 
0 
0 
0 
1 
0 

0 
1 
0 
0 
0 
0 

0 
0 
0 
1 
1 
1 

1 
0 
1 
0 
1 
0 

0 
1 
0 
1 
0 
1 

State diagram : 

 

 If the circuit encounters one of the invalid states (000,110, or 111) it goes to one of the 

valid ones within one or two clock pulses.  For example: if X = 0, the circuit goes 

through the states (110,111,001), if X = 1 it goes through the states: (110,100). 

 The circuit is self- starting and self-correcting. 
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Design of counters : 

 A sequential circuit that goes through a pre specified sequence of states upon the 
application of input pluses is called a counter. 

 An n-bit counter consists of n-flip flops and can count in binary from 0 to 2n –1. 

EXAMPLE 24: 

Design a counter with the following binary sequence and repeat ( 0,1,2,3,4,5 ). Use 

J K flip flops. 

Excitation table : 

Count sequence Flip – Flop inputs 
A B C JA KA JB KB JC KC 
0 
0 
0 
1 
1 
1 

0 
0 
1 
0 
0 
1 

0 
1 
0 
0 
1 
0 

0 
0 
1 
x 
x 
x 

X 
X 
x 
0 
0 
1 

0 
1 
x 
0 
1 
x 

x 
x 
1 
x 
x 
1 

1 
x 
0 
1 
x 
0 

x 
1 
x 
x 
1 
x 

 

 

 

 

 

 

 

 

 

 

            

JA=B     KA = B 

              

JB = C              JC =  B  
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Effect of the two unused states : 

State table  

Present state Next state F.F inputs 
A B C A B C JA KA JB KB JC KC 
0 
1 

1 
1 

1 
1 

1 
0 

0 
0 

0 
0 

1 
1 

1 
1 

1 
1 

1 
1 

0 
0 

1 
1 

State diagram of the counter 

The counter is sell correcting & self starting. Why? 

EXAMPLE 25: 

Design a two-bit count down counter. This is a sequential circuit with two flip flops and one 
input x. When x = 0 , the state of the flip-flops doesn’t change. When x = 1 the state sequence 
is 11, 10, 01 , 00 , 11 and so on . 

1- State diagram : 
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2- Excitation table : 

Present state Input Next state Flip flop inputs 
A B X A B JA KA JB KB 
0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
1 
1 
0 
0 
1 
1 

0 
1 
0 
1 
0 
1 
0 
1 

0 
1 
0 
0 
1 
0 
1 
1 

0 
1 
1 
0 
0 
1 
1 
0 

0 
1 
0 
0 
x 
x 
x 
x 

x 
x 
x 
x 
0 
1 
0 
0 

0 
1 
x 
x 
0 
1 
x 
x 

x 
x 
0 
1 
x 
x 
0 
1 

3- Map Simplification : 

The excitation table of the JK flip-flop is: 

Q(t) Q(t+1) J K 

0 0 0 x 
0 1 1 x 
1 0 x 1 
1 1 X 0 
 

  X                 

  1    x x x x   1 x x  x x 1  
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A x x x x   1     1 x x  x x 1  

   B                

JA = X B  KA = X B  JB = X KB = X 

EXAMPLE 26: 

Design a synchronous counter for the repeating sequence :0 3 6 9 12 0 Use D flip flops . 
Consider the next state for all unused states as zero ( 0000). 

Solution: 

State Diagram : 

Excitation table : 

Present state Next state FFs inputs 
 A B C D A B C D DA DB DC DD 
0 
3 
6 
9 
12 

0 
0 
0 
1 
1 

0 
0 
1 
0 
1 

0 
1 
1 
0 
0 

0 
1 
0 
1 
0 

0 
0 
1 
1 
0 

0 
1 
0 
1 
0 

1 
1 
0 
0 
0 

1 
0 
1 
0 
0 

0 
0 
1 
1 
0 

0 
1 
0 
1 
0 

1 
1 
0 
0 
0 

1 
0 
1 
0 
0 

 

 

 

 

 

 

 

 

 

 

 

Key 

  

DA = A`BCD` +   AB`C`D 

 

DB = ABCD` +  AB`C`D 
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Logic circuit: 

The logic circuit of the counter is shown in figure(63).  Not all the inputs of the flip-
flops are labeled.  The others should be connected and labeled according to the previous 
equations. 
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EXAMPLE 27: 

Redesign the counter described in example (26), but consider that the unused states are don’t 
care conditions. 

 

Analysis of unused states : 

state table  

 Present  State Next  State 
 A B C D A B C D 
1 
2 
4 
5 
7 
8 
10 
11 
13 
14 
15 

0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 

0 
0 
1 
1 
1 
0 
0 
0 
1 
1 
1 

0 
1 
0 
0 
1 
0 
1 
1 
0 
1 
1 

1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
1 

0 
0 
0 
0 
1 
0 
0 
1 
1 
1 
1 

1 
0 
1 
1 
1 
0 
0 
1 
1 
0 
1 

1 
0 
1 
1 
1 
0 
0 
0 
0 
0 
0 

1 
0 
0 
1 
1 
0 
0 
0 
0 
1 
1 
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State Diagram : 

 

1- All the unused states lead to one of the used states. So,  the counter is self starting and 
self correcting . 

 

EXAMPLE 28: 

Repeat the previous example using J K flip-flops. 

   *  Count sequence : 0 3 6 9 12 0 

Q(t) Q(t+1) J K 

0 0 0 x 

0 1 1 x 

1 0 x 1 
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1 1 x 0 

Excitation Table : 

 Present   state Next state FFs inputs 
 A B C D A B C D JA KA JB KB JC KC JD KD 
0 
3 
6 
9 
12 

0 
0 
0 
1 
1 

0 
0 
1 
0 
1 

0 
1 
1 
0 
0 

0 
1 
0 
1 
0 

0 
0 
1 
1 
0 

0 
1 
0 
1 
0 

1 
1 
0 
0 
0 

1 
0 
1 
0 
0 

0 
0 
1 
x 
x 

x 
x 
x 
0 
1 

0 
1 
x 
1 
x 

x 
x 
1 
x 
1 

1 
x 
x 
0 
0 

x 
0 
1 
x 
x 

1 
x 
1 
x 
0 

x 
1 
x 
1 
x 

 

 

 

Analysis of the unused states : 

JA  = KA  = B , JB  = D , KB  = 1 

JC  = A` , KC  = B , JD  =A`, KD  = 1 

State table : 

 Present   state Next State  
 A B C D A B C D J

A 
K
A 

J
B 

K
B 

J
C 

K
C 

J
D 

K
D 
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1 
2 
4 
5 
7 
8 
10 
11 
13 
14 
15 

0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 

0 
0 
1 
1 
1 
0 
0 
0 
1 
1 
1 

0 
1 
0 
0 
1 
0 
1 
1 
0 
1 
1 

1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
1 

0 
0 
1 
1 
1 
1 
1 
1 
0 
0 
0 

1 
0 
0 
0 
0 
1 
1 
1 
0 
0 
0 

1 
1 
1 
1 
0 
0 
1 
1 
0 
0 
0 

0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
1 
1 
1 
0 
0 
0 
1 
1 
1 

0 
0 
1 
1 
1 
0 
0 
0 
1 
1 
1 

1 
0 
0 
1 
1 
0 
0 
1 
1 
0 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 

0 
0 
1 
1 
1 
0 
0 
0 
1 
1 
1 

1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

State Diagram : 

 

 All the unused states lead to one of the used states  

EXAMPLE 29: 

 A sequential circuit with two D flip-flops, A and B, two inputs x and y; and one output z is 
specified by the following next-state and output equations: 

A(t+1) = x’y +xA 

B(t+1) = x’B + xA 
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Z = B 

a) Draw the logic diagram of the circuit. 

b) Derive the state table. 
c) Derive the state diagram. 

Solution:  

 

1-Flip-Flops equations: 

DA = x’y + xA 

DB = x’B + xA 

2- Output equation: z = B 

3- State table: 

 

Present  state Input Next state Output 
A B x y A B Z 
0 0 0 0 0 0 0 
0 0 0 1 1 0 0 
0 0 1 0 0 0 0 
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0 0 1 1 0 0 0 
0 1 0 0 0 1 1 
0 1 0 1 1 1 1 
0 1 1 0 0 0 0 
0 1 1 1 0 0 0 
1 0 0 0 0 0 0 
1 0 0 1 1 0 0 
1 0 1 0 1 1 1 
1 0 1 1 1 1 1 
1 1 0 0 0 1 1 
1 1 0 1 1 1 1 
1 1 1 0 1 1 1 
1 1 1 1 1 1 1 

3-State diagram 

 

 

 

EXAMPLE 30: 

Derive the state table and the state diagram of the sequential circuit shown in figure.  Explain 

the function that the circuit performs. 

Solution: 
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Flip-flops equations: 

  TA = A + B 
 TB = A’ + B 

State table: 

Present state Next state F.F inputs 
A B A B TA TB 
0 0 0 1 0 1 
0 1 1 0 1 1 
1 0 0 0 1 0 
1 1 0 0 1 1 

 

 

 

 

State diagram: 

0 0 1 1

1 00 1
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The circuit counts through the repeated sequence:  

 00 ,  01 , 10 

 

EXAMPLE 31: 

Analyze the circuit shown in figure and prove that it is equivalent to a T flip-flop. 

Solution: 

D = Q  T 

Present state Input Next state  
Q(t) T Q(t+1) D = Q  

T 
0 0 0 0 
0 1 1 1 
1 0 1 1 
1 1 0 0 

 

We notice that, when T = 0, Q(t+1) = Q(t) 

 
 When T =1, Q(t+1) = Q’(t) 

Therefore, it is equivalent to a T flip-flop. 
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EXAMPLE 32: 

Design a synchronous counter that counts through the hexadecimal sequence 2, 4, 8, A, C and 
then repeats.  Use D flip-flops.  Treat the unused states as don’t care conditions. 

Solution: 

Excitation Table: 

Present state Next state Flip Flops inputs 
A B C D A B C D DA DB DC DD 
0 0 1 0 0 1 0 0 0 1 0 0 
0 1 0 0 1 0 0 0 1 0 0 0 
1 0 0 0 1 0 1 0 1 0 1 0 
1 0 1 0 1 1 0 0 1 1 0 0 
1 1 0 0 0 0 1 0 0 0 1 0 

 

x x x 2 
4 x x x 
C x x x 
8 x x A 

Key 

x x x  
1 x x x 
 x x x 
1 x x 1 

DA = A’B + AB’  =  A  B 

x x x 1 
 x x X 
 x x X 
 x x 1 

DB = C 

X x x  
 x x x 
1 x x x 
1 x x  

DC = AC’ 
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From the table DD = 0 

 Draw the circuit yourself with four D flip flops using the functions concluded 
before. 

EXAMPLE 33: 

Analyze the unused states in the previous circuit to check if it is self-starting or not. 

Solution: 

DA = A’B + AB’  =  A  B 
DB = C 
DC = AC’ 
DD = 0 

State table for the unused states: 

A(t+1) = DA 

B(t) = DBC(t+1) = DC

 
 D(t+1) = DD 

State Table 

Present 
state 

Next state After 
correction 

A B C D A B C D A 
0 0 0 0 0 0 0 0 1 
0 0 0 1 0 0 0 0 1 
0 0 1 0 0 1 0 0 0 
0 0 1 1 0 1 0 0 0 
0 1 0 0 1 0 0 0 1 
0 1 0 1 1 0 0 0 1 
0 1 1 0 1 1 0 0 0 
0 1 1 1 1 1 0 0 0 
1 0 0 0 1 0 1 0 1 
1 0 0 1 1 0 1 0 1 
1 0 1 0 1 1 0 0 1 
1 0 1 1 1 1 0 0 1 
1 1 0 0 0 0 1 0 0 
1 1 0 1 0 0 1 0 0 
1 1 1 0 0 1 0 0 0 
1 1 1 1 0 1 0 0 0 
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 The counter is not self-starting because state 0000 leads to state 0.  Also state      0001 
leads to state 0000. 

 This problem can be fixed by taking: 

DA = AB’ + A’C’ 

The value of A after the correction is show in the last column of the table. It is obvious that all 
the unused states lead to some used and the counter is now self-correcting. 

EXAMPLE 34: 

Convert a D flip-flop to a JK flip-flop by including input gates to the D flip-flop.  The gates 
needed for the input of the D flip-flop can be determined by means of sequential circuit 
design procedures. 

Solution: 

The sequential circuit will have one D flip-flop and two inputs, J and K.  It is required to get 
D as function of J and K so that the D flip-flop acts as a J K flip-flop. 

Excitation table: 

Present 
state 

Inputs  Next state F F input 

A(t) J K A(t+1) D 
0 0 0 0 0 
0 0 1 0 0 
0 1 0 1 1 
0 1 1 1 1 
1 0 0 1 1 
1 0 1 0 0 
1 1 0 1 1 
1 1 1 0 0 

 

  1 1 
1   1 

D = A’J + AK’ 
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3 

 The next state is first determined according to the value of J and K; e.g. if JK= 00 it is a 
no-change condition, and so on. 

 The D input is determined from the next state where: D = A(t+1) 
 D is simplified by a Karnaugh map. 
 The resulting circuit is as drawn in figure. 

EXAMPLE 35: 

 Design a sequential circuit with two JK flip-flops, A and B, and two inputs, E and x.  If E = 
0, the circuit remains in the same state regardless of the value of x.  When E = 1 and x = 1, the 
circuit goes through the state transitions from 00, 01, 10, 11 and then repeats.  When E = 1 
and x = 0, the , circuit goes through the state transitions from 11, 10, 01, 00 and then repeats. 

 

Solution: 

Function table of the required counter 

E x Function 
0 0 No-change 
0 1 No-change 
1 0 2-bit up-counter 
1 1 2-bit down counter 

Flip-flop excitation table 

Q(t) Q(t+1) J K 
0 0 0 X 
0 1 1 X 
1 0 x 1 
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1 1 x 0 

Function table: 

Inputs Present state Next state Flip flop inputs 
E x A B A B JA KA JB KB 
0 0 0 0 0 0 0 X 0 X 
0 0 0 1 0 1 0 X X 0 
0 0 1 0 1 0 X 0 0 X 
0 0 1 1 1 1 X 0 X 0 
0 1 0 0 0 0 0 X 0 X 
0 1 0 1 0 1 0 X X 0 
0 1 1 0 1 0 X 0 0 X 
0 1 1 1 1 1 X 0 X 0 
1 0 0 0 0 1 0 X 1 X 
1 0 0 1 1 0 1 X X 1 
1 0 1 0 1 1 X 0 1 X 
1 0 1 1 0 0 X 1 X 1 
1 1 0 0 1 1 1 X 1 X 
1 1 0 1 0 0 0 X X 1 
1 1 1 0 0 1 X 1 1 X 
1 1 1 1 1 0 X 0 X 1 

 

  X X 
  X X 
1  X X 
 1 X X 

JA = E B x’ + E B’x 

Similarly: KA = E B x’ + E B’x     JB = E 

     KB = E 

 Draw the circuit with two JK flip-flops with the functions concluded above. 

EXAMPLE 36: 

Design a counter that goes through the sequence 0,1,3,5,7 and repeats.  Use T flip-flops.  
Treat the unused states as do not care conditions.  Analyze the final circuit to ensure that it is 
self correcting.  If your design produces a on self-correcting counter, you must modify the 
circuit to make it self correcting. 
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Solution: 

Count sequence 
 flip flops inputs 
A  B  C 
 
 TA  TB  TC 
0  0   0 
 
 0      0     1 
0  0   1 
 
 0      1     0 
0  1   1 
 
 1      1     0 
1  0   1 
 
 0      1     0 
1  1   1 
 
 1      1     1 

 

  1 X 
X  1 X 

TA = B 

 

 1 1 X 
X 1 1 X 

TB= C 

 

1   X 
X  1 X 

TC = A B + C’ 

 Draw the circuit composed of three T flip-flops with the functions concluded. 
 Analysis of the unused states: 

P.S. FF inputs N.S. 
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A B C TA TB TC A B C 
0 1 0 1 0 1 1 1 1 
1 0 0 0 0 1 1 0 1 
1 1 0 1 0 1 0 1 1 

Each of the unused states lead to one of the used states.  Therefore, the counter is self 
correcting.  

Draw the state diagram your self to assure this. 
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QUESTIONS 

1) Design a counter circuit that goes through the repeated sequence 0,2,4,6  use J-K flip-
flops.  

2) Starting at QC QB QA = 000, what sequence does the synchronous circuit of three D 
flip-flops step through ? Where  DC = QA    QB    

DB  = QB QC  
  DA = QB + QC  

3) When a student tries to design a counter that goes through the hexadecimal sequence 
2,4,8,A,C he reaches to the following design:  

DA = A    B  DB  = C

 

 DC = AC'

 DD =0 

Draw the logic diagram of the circuit.   Is this circuit self-correcting or not? 

4) A sequential circuit with two T flip-flops A and B one input x, is specified by the 
following equations:  

TA  = A' B + x'B TB = A    B  

 

 Draw the logic diagram of the circuit and derive its state diagram. 

5) Design a sequential circuit that goes through the sequence 1,3,5,7.  use D flip-flops.  
Treat the next state for all the unused states as do not care.  

6) Design a MOD-6 synchronous counter that counts in the sequence 
10,11,12,13,14,15,10,11,12,… and so on.  Use T flip-flops.  Treat the next state for all 
unused states as do not care.  Analyze the resulting circuit to ensure that it is self-
correcting. 

7) Design a MOD-4 UP/DOWN binary counter that has a control input x.  If x=0 it 
counts from 0 to 3 and if x=1 it counts from 3 to 0.  Use S-R flip-flops. 

8) A sequential circuit has two flip-flops, A,B; one input x and one output y. The state 
diagram is shown in figure. Design the circuit using J-K flip-flops. Is it a Moore or a 
Mealy circuit? Give reason.  
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9) A sequential circuit has three flip-flops, A,B,C; one input x and one output y. The state 
diagram is shown in figure.  The circuit is to be designed by treating the unused states 
as do not care conditions. The final circuit must be analyzed to ensure that it is self-

correcting. Use D flip-flops.  
10) Determine the sequence of states produced by the following circuit. 
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11) Determine the sequence of states of the following counter. The counter is initially 
cleared. 

12) Design a sequential circuit to produce the following binary sequence and repeats. Use 
JK flip-flops. 1,4,3,5,6,2,1,…. 

13) Design a counter to produce the following binary sequence. 0,9,1,78,2,7,3,6,4,5,0 

1- Use JK flip flops. 
 
 2- Use D flip-flops. 

3- Use RS flip-flops. 
 
 4- Use T flip-flops. 

In each case analyze the resulting circuit to ensure that the counter is self starting and 
self correcting. You may treat the next state for the unused states as a don’t care 
condition. 

14) Design a binary counter with the sequence shown in the state diagram. 
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CHAPTER 8 

Counter Circuits 

CLASSIFICATION OF COUNTERS 

Counters 

 

 Asynchronous (ripple)
 
 
 Synchronous 

They use the O/P of one FF                      clock inputs on each FF 

to generate the clock 

 

            are connected together 

transition on another FF(s) 

Counters 

 

Binary Decimal Octal special 
0,1,2, ….,2n –1 

i- 0,1,2,3          22 states 

ii- 0,1,…,15     24 states 

 

0,1,2, …, 10n  - 1 

i- 0,1, …. 9       10 states 

ii- 0,1, …99      100 states 

 

 Any specified 
sequence sf 
states 



CHAPTER 8 COUNTER CIRCUITS 

 

-171- 

Counters 

        up

 

 

 down

 

           up/down 

RIPPLE COUNTERS (ASYNCHRONOUS COUNTERS): 

 In the counter circuits designed in part II, input pulses (clock) are simultaneously 
applied to all clock inputs of all flip-flops. So, all the flip-flops are synchronous, 
meaning that they are all triggered at exactly the same time. 

 In ripple (or asynchronous) counters: The clock pulse inputs of all flip-flops (except 

the first one) are triggered not by the input pulses but by the output of other flip-flops. 

 

3-bit Asynchronous Binary counter : (Mod-8) 

To form a 3-bit ripple binary counter, we cascade three J-K flip-flops, each operating in the 
toggle mode as shown in figure (71). 

 The clock input used to increment the binary count comes into the C p input of the 
first flip-flop. 

 Each flip-flop will toggle every time its clock input receives a HIGH – to – Low 

edge 
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Count sequence 
Q2 Q1 Q0 
0 
0 
0 
0 
1 
1 
1 
1 

0 
0 
1 
1 
0 
0 
1 
1 

0 
1 
0 
1 
0 
1 
0 
1 

Timing diagram: 

 

 Each negative edge causes the next flip-flop to toggle. 

 Q0  toggles at each negative edge of the clock input. 

 Q1   toggles at each negative edge of Q0 
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 Q2   toggles at each negative edge of Q1 

 The result is that the outputs will count repeatedly from 000 up to 111 as shown in 

the timing diagram. 

 The term ripple is derived from the fact that the input clock trigger is not 

connected to each flip-flop directly but instead has to propagate down through 

each flip-flop to reach the next. 

 If we have a 4 – bit binary counters, we would count from 0000 up to 1111, which 

are 16 different binary outputs. 

 We can determine the number of states (modulus) of a binary counter by using the 

following formula:  

Modulus = 2 N where 

 N = number of flip – flips on the condition that there are not any unused states. 

Synchronous versus ripple counters: 

   [1] If we look at a given clock pulse, e.g. pulse 7, the negative  

edge C p causes Q0  to toggle low which causes Q1 to toggle low which causes Q2 to 

toggle low. There will be a propagation delay between the time that C p goes low 

until Q2 finally goes low.  Because of this delay, ripple counters are called 

asynchronous counters, meaning that each flip-flop is not triggered at exactly the 

same time. The propagation delay – places limitations on the maximum frequency 

allowed by the clock. 

  [2] Synchronous counters can be formed by driving each flip-flop’s clock by the same 

clock input. Synchronous counters are more complicated than ripples counters. 

DOWN COUNTERS: 
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 To form a down – counter, simply take the binary outputs from the Q outputs instead 

of the Q outputs, as shown in figure (73). The down counter waveforms are shown in 

the timing diagram in figure (74). 

Timing diagram: 

 When we compare the waveforms of the up counter and the down counter, we can see 

that they are exact complements of each other. So, the binary output is taken from Q  

instead of Q. 
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 We can alternatively get count-down counter by connecting Q of each stage to the 

negative edge triggered clock pulse of the next stage and get the output from Q output 

of the flip-flops. 

DESIGN OF DIVIDE – BY – N COUNTERS: 

 Counter circuits are also used as frequency dividers to reduce the frequency of 
periodic waveforms. 

 If we study the waveforms generated by the MOD-8 (3-bit) counter discussed before, 

we notice that the frequency of the 22 output line is one-eighth the frequency of the 

input clock. So, a MOD-8 counter can be used as a divide – by – 8 – frequency divider 

and a MOD – 16 can be used as a divide – by – 16 – frequency divider.  The duty 

cycle of each of the out puts in figure (72) and (74) is 50%  

 To design a divide – by – 5 (MOD –5) counter, we can modify the MOD –8 counter 

so that when it reaches the number 5 (101) all flip – flops will be reset. 

 The new count sequence will be 0 – 1 – 2 – 3 - 4 –and so on.  To get the counter to 

reset at number 5 (binary 101), you will have to monitor 20 and 22 lines and, when 

they are both HIGH, put out a low reset pulse to all flip flops. Figure (75) shows a 

circuit that can work as a MOD-5 ripple binary counter. 

 The inputs to the NAND gate are connected to the 20 and 22 lines, so when the number 

5 (101) comes up the NAND puts out a low level to Reset all flip – flops. 

 As we can see from the timing diagram in figure (76), the number 5 will appear at the 

outputs for a short duration, just long enough to Reset the flip-flops. The resulting 

short pulse on the 20 line is called a glitch. If t PHL of the NAND gate equals 15 ns and 

it also takes 30ns (t PHL) for the low on R D  to Reset the Q output to low. There fore, 

the total length of the glitch equals 45ns. If the input clock period is in the 

microsecond range, then 45ns is insignificant, but at extremely high clock frequencies, 

the glitch could give us erroneous results. Also notice that the duty cycle of each of 

the outputs is not 50% anymore. 
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 Any modulus counter (divide – by – N counter) can be formed by using external 
gating to Reset at a predetermined number. 

 

BCD RIPPLE (DECADE) COUNTER  

Counter with ten states in their sequence (modulus –10) are called decade counters. A 
decade counter with a count sequence of zero (0000) through nine (1001) is a BCD decade 
counter because its ten state sequence is the BCD code. This type of counter is useful in 
display applications in which BCD is required for conversion to decimal output. 
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Fig (77) shows a decade asynchronous counter. To obtain the count sequence (0…..9) and 
back to  0, it is necessary to force the counter to recycle back to the 0000 state after the 1001 
state. One way to make the counter recycle after the count nine is to decode count ten (1010) 

with a NAND gate and connect the output of the NAND gate to the clear ( CLR ) inputs at the 
flip flops as shown in figure (77). When the counter goes into count ten (1010), both 21 and 23 
go HIGH at the same time and the output at the NAND gate goes low to reset all flip-flops. 

 Figure (78) shows how to connect three counters to form a 3-decade decimal BCD 

counter that counts from 0 to 999. 

 

 

EXAMPLE 37: 

Draw the logic diagram of a 4-bit binary ripple up-counter using flip-flops that trigger on the 
positive edge transition. 
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Solution:  

To design this counter start with the count sequence 0000- 1111 (like the one used in case of 
–ve edge transition you studied).  You can notice that: 

A1: complements at each count pulse. 

A2: Complements with each –ve edge of A1. 

A3: Complements with each –ve edge transition of A2. 

A4: Complements with each –ve edge transition of A3. 

EXAMPLE 38: 

Draw the logic diagram of a 4-bit binary ripple down counter using the following: 

a) Flip-flops that trigger on the positive edge transition. 

b) Flip-flops that trigger on the negative edge transition. 

Solution: 

Start with the count sequence 1111-0000 (do it yourself), you will find that: 

A1: complements at each count pulse. 

A2: Complements with each +ve edge of A1. 

A3: Complements with each +ve edge transition of A2. 

A4: Complements with each +ve edge transition of A3. 

For positive edge triggered flip-flop, draw it similar to the previous problem. 
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For negative edge triggered flip-flop, draw it similar to the previous problem. 

 

SYNCHRONOUS COUNTERS: 

Synchronous counters eliminate the propagation delay time of the clock encountered in ripple 

counters because all the clock inputs are tied to a common clock input line, so each flip-flop 

will be triggered at the same time (thus any Q output transitions will occur at the same time). 

If we want to design a 4-bit synchronous binary up counter with T flip-flops, the following 

steps are done: 

Excitation table: 

Count sequence Flip-flops inputs 

A3 A2 A1 A0 TA3 TA2 TA1 TA0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

1 

1 

1 
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0 

0 

0 

0 

0 

1 

1 

. 

. 

1 

0 

1 

1 

1 

1 

0 

0 

. 

. 

1 

1 

0 

0 

1 

1 

0 

0 

. 

. 

1 

1 

0 

1 

0 

1 

0 

1 

. 

. 

1 

0 

0 

0 

0 

1 

0 

0 

. 

. 

1 

1 

0 

0 

0 

1 

0 

0 

. 

. 

1 

1 

0 

1 

0 

1 

0 

1 

. 

. 

1 

1 

1 

1 

1 

1 

1 

1 

. 

. 

1 

 We can conclude from the excitation table (using a Karnauph map or by inspection that  

TA0 = 1   TA1 = A0

TA2 = A0 A1

 

 TA3 = A0  A1 A2  

The 4 – bit synchronous counter is shown in figure (82). 

 The synchronous counter can be implemented using J-K flip-flops operated in toggle 

mode by joining J and K together as shown in figure (83). 
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 We notice that the first flip-flop toggles with each clock-pulse, the second flip-flop 

toggles when the output of the first flip-flop is HIGH, the third flip-flop toggles when the 

outputs of the first and the second flip- flops are both HIGH. This logic holds for all the 

stages and can be used to extend the counter to any number of n-bits. 

SYNCHRONOUS BINARY DOWN-COUNTER: 

A binary down- counter can be implemented in a similar way to the up counter. The only 

change is that the Q outputs are used as inputs to the T (or J–K) input of the next flip-flop. 

The 4-bit synchronous binary down counter is shown in figure (84). 

UP/DOWN SYNCHRONOUS COUNTERS: 

An up/down counter is one that is capable of progressing in either direction through a certain 

sequence. An up/down counter, sometimes called a bi-directional counter, can have any 

specified sequence of states. A 3-bit binary counter that advances upward through the 
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sequence (0,1,2,3,4,5,6,7) and then can be reversed so that it goes through the sequence in the 

opposite direction (7,6,5,4,3,2,1,0) is shown in figure (85). 

 If the UP/ DOWN  input is HIGH, the upper AND gates are active and the circuit 

works as an up–counter. 

 If the UP/ DOWN  input is LOW, the lower AND gates are active and the circuit 

works as a down counter. 
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QUESTIONS 

1) Design and sketch a MOD-12 ripple up counter that can be manually RESET by an 
external push button. Explain the circuit operation in details.  

2) Design a divide-by-14 ripple counter that can be manually RESET by an external push 
button.  Sketch the timing diagram at the output of each stage and calculate the duty 
cycle at the final stage.  Explain the circuit operation in details and the reason of the 
glitch at the final stage. 

3) The waveforms shown are applied to the inputs at A, 
d

R  and Cp. Sketch the resultant 

waveforms at D, Q, Q  and x. 

 

4) What is the modulus of a counter whose output counts from: 

a) 0 to 7 
b) 5 to 0
c) 2 to 15
 d) 7 to 3 

5) How many J-K flip-flops are required to construct the following counters: 

a) Mod 7 
b) Mod 20
c) Mod 33
 d) Mod 2 

6) If the input frequency to a 6-bit counter is 10 MHz, what is the frequency at the 
following input terminals: 

20, 21, 22, 23, 24, 25 

7) Draw the timing waveform at 
p

C , 20, 21, 22 for a 3-bit binary up-counter for 10 clock 

pulses. 
8) Repeat the previous problem for a binary down counter. 
9) How many flip-flops are required to form the following divide-by-N frequency 

dividers? 
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a) divide-by-12 
 b) divide-by-18. 

10) Explain why the propagation delay of a flip-flop affects the maximum frequency at 
which a ripple counter can operate. 

11) Design a circuit that will convert a 2-MHz input frequency into a 0.4 MHz output 
frequency. 

12) Design and sketch a MOD-5 ripple down-counter with a manual reset push button. 
The count sequence are 7,6,5,4,3,7,6,5,….  And so on. 

13) What advantages a synchronous counter have over a ripple-counter? 

14) Sketch the waveform at 
p

C , 20, 21, 22 for 10 clock pulses in the counter shown in 

figure. 

 

15) In the previous problem, find the duty cycle fort the 22 output wave. 
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CHAPTER 9 

REGISTERS 

REGISTER WITH PARALLEL LOAD : 

A register is a group of binary storage cells suitable for holding binary information. A 

group of flip-flops constitutes a register. some registers have additional gates that can affect 

the circuit operation. 

A group of flip-flops sensitive to pulse duration is called a latch whereas, a group of 

flip- flops sensitive to pulse transition is called a register. 

The function table of the register is : 

Load Clock Clear Function 

0 

1 

x 

x 

↓ 

x 

1 

1 

0 

No change 

Load 

clear 

 When the clear is LOW, all the flip-flops outputs (A0 - A3 ) are cleared regardless of the 

value of the load input or the parallel inputs (I0 - I3 ). 
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 When the load input is LOW , the J and K inputs of all flip-flops are LOW. So, the 

register is in the HOLD or no-change state. 

 When the load input is HIGH, J = I and K= I  for all flip-flops. For example if I0 = 1, J0 = 

1 and K0 = 0 . So, the flip-flop is in the set condition and A0 = 1.  Similarly if  I0 = 0, J0 = 0 

and K0 = 1. So, the flip-flop is in the reset condition and A0 = 0. We notice that in both 

cases A0 = I0.  This holds for all the flip-flops outputs (A0 - A3 ) and the inputs (I0 - I3 ) are 

parallely loaded in the register . 

 The storage capacity of a register is the number of bits (1s and 0s ) of digital data it can 

retain. Each flip-flop in a register represents one bit of storage capacity. 



CHAPTER 9 REGISTERS 

 

-187- 

SHIFT REGISTER BASICS: 

A register is a digital circuit with two basic functions : 

Data storage and data movement. The storage capability of a register makes it an important 

type of memory device. The shifting capability of a register permits the movement of data 

from stage to stage within the register or into or out of the register upon application of  clock 

pulses. The following figure illustrates the types of data movement in shift registers. The 

block represents any arbitrary 4-bit register, and the arrows indicate the direction of data 

movement. 
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SERIAL IN/SERIAL OUT SHIFT REGISTERS: 

The serial in / serial out shift register accepts data serially, i.e. one bit at a time on a 

single line . It produces the stored information on its output also in serial form. Figure(87) 

shows a 4-bit serial in / serial out shift register using D flip-flops. 

The output of each FF is connected as an input to the next flip-flop . So, the data are 

shifted to the right from one flip-flop to another. Suppose that the register initially contains 

(0111) and the data 1011 are serially ( bit by bit ) loaded to the D input of the left flip- flop . 

The contents of the register and the serial output after each clock pulse are shown in the 

following table: 

 

Clock 

pulse 

Serial I/P 

Bit 

State of register 

( parallel outputs ) 

Serial 0/P bit 

Initial 

1 

2 

3 

4 

1 

1 

0 

1 

x 

0 

1 

1 

0 

1 

1 

0 

1 

1 

0 

1 

1 

0 

1 

1 

1 

1 

1 

0 

1 

1 

1 

1 

0 

1 
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 To take serial data out of FF0, the data enters the D input of FF3 and are shifted to the 

right one bit with each clock pulse. After four clock pulses the data appear at Q0 and can 

be obtained serially one bit for each clock pulse . 

 The previous register can also be operated as a serial in/parallel out shift register. In this 

case, data can be obtained from the Q output of the four flip-flops at the same time.  But, 

we should note that to load a register with four consecutive bits, we should wait for four 

clock pulses. 

 It is obvious from the previous discussion that the shift register is simpler to implement 

but it is slower in operation. 

 The previous register is a shift right register.  We can implement a shift left register in a 

similar way but connecting the output of a flip-flop to the input of the flip-flop to the left, 

the serial input is connected to FF0 and the serial out put is taken from FF3. 

A block diagram for an 8-bit serial in/serial out shift- register is shown in figure(88). 

A block diagram for a 4-bit serial in/ parallel out shift register is shown in figure(89). 
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PARALLEL IN/SERIAL OUT SHIFT REGISTERS 

For a register with parallel data inputs, the bits are entered simultaneously into their respective 
stages on parallel line rather than on a bit–by–bit basis on one line as with serial data inputs. 
The serial output is the same as described before, once the data are completely stored in the 
register. 

The data storage elements can be D flip–flops, R-S flip-flops or J-K flip-flops. In the next 
circuit we will use a J-K flip-flop. Most J-Ks are negative edge triggered and will have an 

active-low asynchronous Set (S D) and Reset ( R D). Figure (90) shows the circuit connections 
for a 4-bit parallel-in, serial out shift register that is first reset and then parallel loaded with an 
active-LOW 7 (1000), and then shifted right four positions. 

All clock inputs are fed from a common clock input. Each flip-flop will respond to its J-K 
inputs at every negative clock input edge. Because every  J-K input is connected to the 
preceding stage output, then at each negative clock edge each flip-flop will change to the 
state of the flip-flop to its left.   In other words, all data bits will be shifted one position to 

the right . 

Initially, RESET  goes low, resulting Q0 to Q3 to Zero. Next , the parallel data are input ( 

parallel loaded ) via the D0 to D3 input lines. Because the SET  inputs are active LOW, the 

complement of the number to be loaded must be used . The SET inputs must be returned 
HIGH before shifting can be initiated.  

At the first negative clock edge, 

 Q0 

 takes on the value of Q1 
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 Q1 

 takes on the value of Q2 

 Q2 

 takes on the value of Q3  

 Q3 

 is Reset by J = 0, K = 1 

In effect, the bits have all shifted one position to the right. The following negative edges of 

clock periods 2,3 and 4 will each shift the bits one more position to the right. 

The serial output data come out of the right – end flip-flop (Q0). As the LSB was parallel 
loaded into the right most flip–flop, the LSB will be shifted out first. The order of the parallel 
input data bits could have been reversed and the MSB would have come out first. Either case 
is acceptable. It is up to the designer to know which is first, MSB or LSB, and when to read 
the serial output data line. 

Figure (91) shows how shift registers are commonly used in data communications systems. 
Computers operate on data internally in a parallel format. To communicate over a serial cable 
or a telephone line, the data must first be converted to the serial format. For example, for 
computer A to send data to computer B, computer A will parallel load 8 bits of data into shift 
register A and then apply eight clock pulses. The 8 data bits output from shift register A will 
travel across the serial communication line to shift register B, which is concurrently loading 
the 8 bits. After shift register B has received all 8 data bits, it will output them on its parallel 
output lines to computer B. This is a simplification of the digital communication that takes 
place between computers, but it illustrates the heart of the system, the shift register. 
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Figure (92) illustrates another way to implement a 4-bit parallel in/serial out shift register. 

Notice that there are four data-input lines, D0, D1, D2 and D3, and a SHIFT/ LOAD  input, 
which allows four bits of data to be loaded in parallel into the register. When 

SHIFT/ LOAD is Low, the AND gates to the right in each pair of gates are enabled (the gates 
connected to the inverters ) allowing each data bit to be applied to the D input of its 
corresponding flip-flop. When a clock pulse is applied, the flip-flops with D=1 will SET and 
those with D = 0 will RESET, thereby storing all four bits simultaneously.  

When SHIFT/ LOAD  is HIGH, the AND gates to the left in each pair of gates are enabled ( 

gates connected directly to SHIFT/ LOAD  input ) allowing the data bits to shift right from 
one stage to the next. The OR gates allow either the normal shifting operation or the parallel 
data- entry operation, depending on which AND gates are enabled by the level on the 

SHIFT/ LOAD  input. Note that each OR gate and the 2-AND gates connected to it act as a 2 
X 1 multiplexer. So, if we want the register to perform n-operations we could use an Nx1 
multiplexer. 

 

 

BIDIRECTIONAL SHIFT REGISTER: 

A bi-directional shift register is one in which the data can be shifted either left or right. It can 
be implemented by using gating logic or interchangeably a multiplexer that enables the 
transfer of data in parallel or from one stage to the next stage either to the right or to the left 
according to the control signals. 

Figure (93) shows a 4-bit bi-directional shift register with parallel load. It consists of four D 
flip-flops and four multiplexers. The four multiplexers have two common selection variables 
S1 and S0. When S1S0 = 00 , input 0 is selected by the multiplexer and the present value of the 
register is applied to the D inputs of the flip–flops. The next clock pulse transfers into each 
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flip-flop the binary value it held previously, and no change of state occurs. When S1S0 = 01, 
terminals 1 of the multiplexer inputs have a path to the D inputs of the flip-flops. This causes 
a shift-right operation, with the serial input transferred into flip-flop A3. When S1S0 = 10, a 
shift-left operation results, with the serial input transferred into flip-flop A0. Finally, when 
S1S0 = 11, the binary information on the parallel input lines is transferred into the register 
simultaneously during the next clock pulse. 

 

The function table of the register is : 

S1 S0  Operation 
0 

0 

1 

1 

0 

1 

0 

1 

No change. 

Shift right. 

Shift left. 

Parallel load. 
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EXAMPLE 39 

The contents of a 4-bit register are initially 1101.  The register is shifted six times to the right 
with the serial input being 101101.  What is the content of the register after each shift? 

Solution:  

 Serial 
input 

Register contents 

Initially 1 1 1 0 1 
After T1 0 1 1 1 0 
After T2 1 0 1 1 1 
After T3 1 1 0 1 1 
After T4 0 1 1 0 1 
After T5 1 0 1 1 0 
After T6  1 0 1 1 

EXAMPLE 40 

 Design a shift register with parallel load that operates according to the following table: 

Shift Load Operation 
0 0 No change  
0 1 Parallel load 
1 X Shift right 

Solution: 
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RING SHIFT COUNTER AND JOHNSON SHIFT COUNTER: 

Two common circuits that are used to create sequential control waveforms for digital systems 
are the ring and Johnson shift counters.  They are similar to a synchronous counter because 
the clock input to each flip-flop is driven by the same clock pulse.  Their outputs do not count 
in true binary, but instead provide a repetitive sequence of digital output levels.  These shift 
counters are used to control a sequence of events in a digital system (digital sequences). 
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In the case of a 4-bit ring shift counter, the output at each flip-flop will be HIGH for one clock 
period, then LOW for the next three, and then repeat as shown in figure (96).  To form the 

ring shift counter  of figure (95), the Q- Q  output of each stage is fed to the J-K input of the 
first stage.  Before applying clock pulses, the shift counter is preset with a 1-0-0-0. 

Ring shift counter operation 

The RC circuit connected to the power supply will provide a LOW then HIGH as soon as the 
power is turned on, forcing a HIGH-LOW-LOW-LOW AT Q0-Q1-Q2-Q3, which is the 
necessary preset condition for a ring shift counter.  At the first negative clock input edge, Q0 
will go LOW because just before the clock edge J0 was low (from Q3) and K0 was HIGH 
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(from Q0 ).  At the same clock edge, Q1 will be HIGH because its J-K inputs are connected to 

Q0 - Q0 , which were 1-0.  The Q2 and Q3 flip-flops will remain Reset (LOW) because their J-
K inputs see a 0-1 from the previous flip-flops. 

Now, the ring shift counter is outputting a 0-1-0-0 (period 2).  At the negative edge of period 
2, the flip-flop outputs will respond to whatever levels are present at their J-K inputs, the 
same as explained in the preceding paragraph.  That is, because J2-K2 are looking back at 

(connected to) Q1- Q1  (1-0), then Q2 will go HIGH.  All other flip-flops are looking back at a 
0-1, so they will Reset (LOW).  This cycle repeats continuously.  The system acts like it is 
continuously “pushing” the initial HIGH level at Q0 through the four flip-flops. 

The Johnson shift counter circuit is similar to the ring shift counter except that the output lines 
of the last flip-flop are crossed (thus an alternative name is twisted ring counter) before 
feeding back to the input of the first flip-flop and all flip-flops are initially RESET as shown 
in figure (97). 

Johnson shift counter operation 

The RC circuit provides an automatic RESET to all four flip-flops, so the initial outputs will 
all be RESET (LOW).  At the first negative clock input edge, the first flip-flop will set HIGH 

because J0 is connected to Q3  (HIGH) and K0 is connected to Q3 (LOW).  The Q1,Q2 and Q3 
outputs will follow the state of their preceding flip-flops because of their direct connection J 
to Q.  Therefore, during period 2, the output is 1-0-0-0. 

At the next negative edge, Q0 remains HIGH because it takes on the opposite state of Q3, Q1 
goes HIGH because it takes on the same state as Q0, Q2 stays LOW, and Q3 stays LOW.  Now 
the output is 1-1-0-0. 

The sequence continues as shown in figure (98).  Notice that, during period 5, Q3 gets Set 
HIGH.  At the end of period 5, Q0 gets Reset LOW because the outputs of Q3 are crossed, so 
Q0 takes the opposite state of Q3. 
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