
- 1 –

CHAPTER 1 4
NUMBER SYSTEMS AND CODES 4

DIGITAL SYSTEM 4
INTRODUCTION 4
BINARY NUMBERS 4

Binary to Decimal Conversion 5
Decimal to Binary Conversion 5
Range of binary numbers: 6
Binary Arithmetic 6

OCTAL NUMBERS 9
Octal Conversions 10

HEXADECIMAL NUMBERS 11
Hexadecimal Conversion 12

1’S AND 2’S COMPLEMENTS 13
REPRESENTATION OF SIGNED NUMBERS 14

Sign-Magnitude 14
1’s Complement 15
2’s Complement 16
2's Complement Evaluation: 18

ARITHMETIC OPERATIONS WITH SIGNED NUMBERS 19
Addition 19
Subtraction 21

BINARY CODED DECIMAL (BCD) 23
THE ASCII CODE 24
EXTENDED ASCII CHARACTERS 25
THE EXCESS-3 CODE 26

Self-Complementing Property 27
ERROR-DETECTION CODE 28
QUESTIONS 29

CHAPTER 2 32
LOGIC GATES 32

BOOLEAN VARIABLES & TRUTH TABLES 32
OR OPERATION 33

Timing Diagrams of OR gates 34
An application: Alarm System 34

AND OPERATION 35
Timing Diagrams of AND gates 36
An application: A Seat Belt Alarm System 36

NOT OPERATION 37
NOR OPERATION 38

Negative AND equivalent of a NOR gate 38
An application: An aircraft landing indicator 39

NAND OPERATION 40
Negative OR Equivalent Operation of the NAND Gate 41
An application: A Manufacturing Plant Tank Indicator 41

THE EXCLUSIVE-OR AND EXCLUSIVE-NOR GATES 42
The Exclusive- OR Gate 42
The Exclusive-NOR Gate 42
Timing diagram 43

- 2 –

INTEGRATED CIRCUIT LOGIC FAMILIES 43
Diode Logic (DL) 43
Resistor-Transistor Logic (RTL) 44
Diode-Transistor Logic (DTL) 45
Transistor-Transistor Logic (TTL) 45
Emitter-Coupled Logic (ECL) 46
CMOS Logic 47
Fan-in 49
Fan-out 49
Comparison of performance characteristics of CMOS, TTL and ECL logic gates. 49

QUESTIONS 49
CHAPTER 3 54
BOOLEAN ALGEBRA ... 54

DESCRIBING LOGIC CIRCUITS ALGEBRAICALLY 54
EVALUATING LOGIC CIRCUIT OUTPUTS 54
IMPLEMENTING CIRCUITS FROM BOOLEAN EXPRESSION 56
BOOLEAN THEOREMS 56
DEMORGAN'S THEOREM 59
UNIVERSALITY OF NAND & NOR GATES 61
ALTERNATE LOGIC GATE REPRESENTATIONS 62
LOGIC SYMBOL INTERPRETATION 64
CANONICAL AND STANDARD FORMS 64

Minterms and Maxterms 64
Sum of Minterms 66
Product of Maxterms 67
STANDARD FORMS 68

QUESTIONS 69
CHAPTER 4 72
THE KARNAUGH MAP ... 72

THE THREE VARIABLE KARNAUGH MAP 72
THE FOUR VARIABLE KARNAUGH MAP 72
KARNAUGH MAP SIMPLIFICATION OF SOP EXPRESSIONS 73
DETERMINING THE MINIMUM SOP EXPRESSION FROM THE MAP 73
KARNAUGH MAP PRODUCT OF SUM (POS) SIMPLIFICATION 75
DON'T CARE CONDITIONS 77
QUESTIONS: 79

CHAPTER 6 81
SEQUENTIAL LOGIC AND FLIP-FLOPS 81

INTRODUCTION 81
SEQUENTIAL CIRCUITS AND FEEDBACK: 81

Cross- NOR S-R latch (active high) 82
Cross- NAND S-R latch . (active low). 86
S – R Timing Analysis : 89
Switch Debouncing Circuits : 91

STATE : 96
CLOCKED SR LATCHES (FLIP – FLOPS) : 96
GATED D LATCH : 99

Integrated – circuit D latch (7475) : 100
J–K FLIP – FLOPS : 102

- 3 –

T. (TOGGLE) FLIP–FLOP 106
MASTER – SLAVE FLIP-FLOPS : 107
EDGE – TRIGGERED J K FFS : 109
MASTER-SLAVE FLIP-FLOP AND 1S CATCHING: 114
DIRECT (ASYNCHRONOUS) INPUTS : 117
FLIP- FLOP OPERATING CHARACTERISTICS 120

Propagation Delay times: 120
SET-UP TIME 122
HOLD TIME 122

QUESTIONS 124
CHAPTER 7 127
SEQUENTIAL CIRCUIT ANALYSIS AND DESIGN127

FLIP-FLOP EXCITATION TABLES : 127
BASIC DEFINITIONS OF SEQUENTIAL CIRCUITS 129

Sequential circuit : 129
State Versus Output: 129
Moore Circuits (Fig (46)) : 129
Mealy Circuits: 130

COUNTERS 130
STATE DIAGRAM: 131
ANALYSIS OF A SEQUENTIAL CIRCUIT : 132

Analysis of synchronous counters 136
DESIGN OF SEQUENTIAL CIRCUITS : 139

Design with unused states : 141
Design of counters : 146

QUESTIONS 166
CHAPTER 8 170
COUNTER CIRCUITS ... 170

CLASSIFICATION OF COUNTERS 170
RIPPLE COUNTERS (ASYNCHRONOUS COUNTERS): 171

3-bit Asynchronous Binary counter : (Mod-8) 171
COUNT SEQUENCE 172
DOWN COUNTERS: 173
DESIGN OF DIVIDE – BY – N COUNTERS: 175
BCD RIPPLE (DECADE) COUNTER 176
SYNCHRONOUS COUNTERS: 179
SYNCHRONOUS BINARY DOWN-COUNTER: 181
UP/DOWN SYNCHRONOUS COUNTERS: 181
QUESTIONS 183

CHAPTER 9 185
REGISTERS 185

REGISTER WITH PARALLEL LOAD : 185
SHIFT REGISTER BASICS: 187
SERIAL IN/SERIAL OUT SHIFT REGISTERS: 188
PARALLEL IN/SERIAL OUT SHIFT REGISTERS 190
BIDIRECTIONAL SHIFT REGISTER: 192
RING SHIFT COUNTER AND JOHNSON SHIFT COUNTER: 195

Ring shift counter operation 196
Johnson shift counter operation 197

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 4 –

CHAPTER 1

NUMBER SYSTEMS AND CODES

DIGITAL SYSTEM

INTRODUCTION

You have previously studied how to represent a number in decimal, binary, octal and

hexadecimal numbering systems and also how to make a conversion from one

representation to the other ones. In the following sections, we will make a quick

overview of these skills. Then, we will illustrate how to represent negative numbers in

binary and how to make arithmetic operations on them. After that a group of the most

used codes and their common uses are given. Finally, two famous and simple error

correction and detection codes are given.

BINARY NUMBERS

In the well known decimal numbering system, each position can represent 10 different
digits from 0 to 9. each position has a weighting factor of powers of 10.

Example:

To Evaluate (5621)10 each digit is multiplied by the weight of its position which is a
power of 10.

5621 = 1x100 + 2x101 + 6x102 + 5x103

A similar approach is followed in the other numbering systems with a variation in the
base (10, 2, 8, 16). In binary numbers, we can only use the digits 0 and 1 and the
weights are powers of 2.

Table[I]

210 29 28 27 26 25 24 23 22 21 20
1024 512 256 128 64 32 16 8 4 2 1

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 5 –

Binary to Decimal Conversion

To convert a binary number into decimal, we multiply each bit (binary digit) by the
weight of its position and sum up the results.

Example:

Convert the binary number (11011011)2 to decimal.

Answer:

(11011011)2 = 1x 20+ 1x 21+ 1x 23+ 1x 24+ 1x 26+ 1x27 = 1 + 2 + 8 +16 + 64 + 128 = 219

Decimal to Binary Conversion

There are two ways to make this conversion; the repeated division-by-2-
method (which you have studied before) and the sum of weights method (which will
be illustrated now).

Sum of weights method:

To find a binary number that is equivalent to a decimal number, we can determine the
set of binary weights whose sum is equal to the decimal number. We can use table[I] to
determine the highest weight that is less than the number and put 1 in its position then
subtracting it from the number and repeating the same process until finding all the 1s in
the number then filling the positions in between with 0s.

Example:

Convert the following decimal numbers to binary form: 13, 100, 65, and 189. Put your
answer as eight bit numbers.

Answer:

 128 64 32 16 8 4 2 1
13 = 0 0 0 0 1 1 0 1
100 = 0 1 1 0 0 1 0 0
65 = 0 1 0 0 0 0 0 1
189 = 1 0 1 1 1 1 0 1

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 6 –

Range of binary numbers:

We have used eight bit numbers for illustration because the 8-bit grouping is
standard in most computers and has been given the special name byte. Using eight
bits, 256 different numbers can be represented. Combining two bytes to get sixteen
bits, 65,536 different numbers can be represented. Combining four bytes to get 32 bits,
4.295 X 109 different numbers can be represented, and so on. The formula for finding
the number of different combinations of n bits is

Total combinations = 2n different numbers in the range 0 to (2n – 1)

For example a 4-bit number can hold up to 24=16 different values in the range
0 to 15 (0 to 1111). An 8-bit number can hold up to 28=256 different values in the
range 0 to 255 (0 to 11111111).

Example:

What is the range of values (in decimal) that can be represented by a binary number of
the following number of bits: 10, 20 and 24.

Solution:

N=10 range = 0 to 210 – 1 = 0 to 1023

 i.e. 1024 (1K)numbers

N=20 range = 0 to 220 – 1 = 0 to 1048575

 i.e. 1048576 (1M)numbers

N=24 range = 0 to 224 – 1 = 0 to 16777215

 i.e. 16777216 (16M)numbers

Binary Arithmetic

Binary Addition

The four cases for adding binary digits (A + B) are as follows:

A B S C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Where: S is the sum and C is the carry.

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 7 –

Example:

Add the following binary numbers and put the result in 8-bits. Verify your answer by
converting into decimal: a) 00111111 + 01111100

b) 11101101 + 01000011

Answer:

a) 00111111 + 01111100 = 10111011 (63 + 124 = 187)

b) 11101101 + 01000011 = 100110000 This example shows that the result could

not fit in 8-bits (237 + 67 = 304) and the maximum capacity of 8-bits is 255. That is

what we call overflow.

1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1
0 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1
1 0 1 1 1 0 1 1 1 0 0 1 1 0 0 0 0

Binary Subtraction

The four cases for subtracting binary digits (A - B) are as follows:

A B D B
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

Where: D is the difference and B is the borrow.

Example:

Subtract the following binary numbers and put the result in 8-bits. Verify your answer
by converting into decimal: a) 10111111 - 01111100

b) 11101101 - 01000011

Answer:

a) 10111111 - 01111100 = 01000011 (191 - 124 = 67)

b) 11101101 - 01000011 = 10101010 (237 – 67 = 170)

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 8 –

0 10 0 10
1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1
0 1 1 1 1 1 0 0 0 1 0 0 0 0 1 1
0 1 0 0 0 0 1 1 1 0 1 0 1 0 1 0

Binary Multiplication

The four cases for multiplying binary digits (A x B) are as follows:

A B P
0 0 0
0 1 0
1 0 0
1 1 1

Where: P is the product.

Example:

Multiply the following binary numbers and put the result in 8-bits. Verify your answer
by converting into decimal: a) 11100 x 101 b) 11011 x 1101

Answer:

a) 11100 x 101 = 10001100

(16+8+4) x (4+1) = (128+8+4) 28 x 5 = 140

b) 11011 x 1101 = 101011111

(16+8+2+1) x (8+4+1) = (256+64+16+8+4+2+1)

27 x 13 = 351

This case indicates a condition of overflow, where the resulting number (351) could
not fit in 8-bits and we need an extra bit to represent it correctly.

 1 1 1 0 0 1 1 0 1 1

 1 0 1 1 1 0 1

 1 1 1 0 0 1 1 0 1 1

 0 0 0 0 0 0 0 0 0 0

 1 1 1 0 0 1 1 0 1 1

 1 0 0 0 1 1 0 0 1 1 0 1 1

 1 0 1 0 1 1 1 1 1

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 9 –

Binary Division

Division in binary numbers is similar to long division in decimal.

Example:

Divide the following binary numbers and put the result in 8-bits. Verify your answer
by converting into decimal: 11001 ÷ 101

Answer:

a)
 11001 ÷ 101 = 101

(16+8+1) ÷ (4+1) = (4+1)

25 ÷ 5 = 5

 1 0 1

1 0 1 1 1 0 0 1

 1 0 1

 1 0 1

 1 0 1

 0 0 0

OCTAL NUMBERS

The eight allowable digits are 0,1,2,3,4,5,6 and 7 and the weights are powers
of 8.

Decimal Binary Octal

0 0 0 0 0
1 0 0 1 1
2 0 1 0 2
3 0 1 1 3
4 1 0 0 4
5 1 0 1 5
6 1 1 0 6
7 1 1 1 7
8 1 0 0 0 1 0
9 1 0 0 1 1 1
10 1 0 1 0 1 2
11 1 0 1 1 1 3

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 10 –

Octal Conversions

Converting from binary to octal is simply a matter of grouping the binary

positions in groups of three (starting at the least significant position) and writing down

the octal equivalent.

Example

Convert the following binary numbers into octal: a) 10110111 b) 01101100

Solution:

a) 10110111 = 010 101 111 = 257 (add a zero to the left and start from the least

significant bit (LSB) make groups of three bits and convert each group into

octal)

b) 01101100 = 001 101 100 = 154

Example

Convert the following octal number into binary: a) 327 b)601

Solution:

a) 327 = 011 010 111 = 11010111

(replace each octal number with three equivalent binary numbers even if the number

can be represented by less than three bits)

b) 601 = 110 000 001 = 110000001

 To convert from octal to decimal, (multiply by weighting factors).

Example:

Convert 713 to decimal.

Solution:

713 = 7 x 82 + 1 x 81 + 3 x 80 = 459

 To convert from decimal to octal, the successive-division procedure or the sum of
weights procedure can be used.

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 11 –

Example

Convert the following decimal numbers to octal: a) (596)10 b) (100)10

Solution:

 83 82 81 80

 512 64 8 1
596 = 1 1 2 4
1000 = 1 7 5 0

HEXADECIMAL NUMBERS

The 16 allowable digits are 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E and F and the
weights are powers of 16.

Decimal Binary Hexadecimal
0 0000 0000 0 0
1 0000 0001 0 1
2 0000 0010 0 2
3 0000 0011 0 3
4 0000 0100 0 4
5 0000 0101 0 5
6 0000 0110 0 6
7 0000 0111 0 7

a) 596 ÷ 8 = 74 remainder 4

 74 ÷ 8 = 9 remainder 2 1124

 9 ÷ 8 = 1 remainder 1

 1 ÷ 8 = 0 remainder 1

b) 1000 ÷ 8 = 125 remainder 0

 125 ÷ 8 = 15 remainder 5 1750

 15 ÷ 8 = 1 remainder 7

 1 ÷ 8 = 0 remainder 1

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 12 –

8 0000 1000 0 8
9 0000 1001 0 9
10 0000 1010 0 A
11 0000 1011 0 B
12 0000 1100 0 C
13 0000 1101 0 D
14 0000 1110 0 E
15 0000 1111 0 F
16 0001 0000 1 0
17 0001 0001 1 1
18 0001 0010 1 2
19 0001 0011 1 3
20 0001 0100 1 4

Hexadecimal Conversion

Converting from binary to hexadecimal is simply a matter of grouping the

binary positions in groups of four (starting at the least significant position) and writing

down the hexadecimal equivalent.

Example

Convert the following binary numbers into hexadecimal: a) 10101111 b) 01101100

Solution:

a) 10110111 = 1011 0111 = (B 7)16

b) 01101100 = 0110 1100 = (6 C)16

Example

Convert the following hexadecimal number into binary: a) A2E b)60F

Solution:

a) (A2E)16 = 1010 0010 1110 = (101000101110)2

(replace each hexadecimal number with four equivalent binary numbers even if the

number can be represented by less than four bits)

b) (60F)16 = 0110 0000 1111 = (011000001111)2

 To convert from hexadecimal to decimal, (multiply by weighting factors).

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 13 –

Example:

Convert (7AD)16 to decimal.

Solution:

(7AD)16 = 7 x 162 + 10 x 161 + 13 x 160 = (1965)10

 To convert from decimal to hexadecimal, the successive-division procedure or the
sum of weights procedure can be used.

Example

Convert the following decimal numbers to hexadecimal: a) (596)10 b) (100)10

Solution:

 162 161 160

 256 16 1
596 = 2 5 4
1000 = 3 E 8

a) 596 ÷ 16 = 37 remainder 4

 37 ÷ 8 = 4 remainder 5
 554

 5 ÷ 8 = 0 remainder 5

b) 1000 ÷ 16 = 62 remainder 8

 62 ÷ 16 = 3 remainder 14
 3E8

 3 ÷ 16 = 0 remainder 3

1’s and 2’s COMPLEMENTS

1’s and 2’s complement allow the representation of negative numbers in
binary. In most computers 2’s complement is used to represent negative numbers.

The 1's complement of a binary number is found by simply changing all 1s
to 0s and all 0s to 1s.

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 14 –

Example:

Obtain the 1’s complement of the following binary numbers: 10001111, 01101100 and
00110011

Solution

The 1’s complement of 10001111 = 01110000 .

The 1’s complement of 01101100 = 10010011 .

The 1’s complement of 00110011 = 11001100 .

The 2's complement of a binary number is found by adding 1 to the LSB of
the 1 's complement.

Another way of obtaining the 2’s complement of a binary number is to start
with the LSB (the rightmost bit) and leave the bits unchanged until you find the first
1. Leave the first 1 unchanged and complement the rest of the bits (change 0 to 1
and 1 to 0).

Example:

Obtain the 2’s complement of the following binary numbers: 10001111, 01101100 and
00110011

Solution

The 2’s complement of 10001111 = 01110000 +1 = 01110001

The 2’s complement of 01101100 = 10010011 + 1 = 01101101

The 2’s complement of 00110011 = 11001100 + 1 = 00110100

To convert from a 1's or 2's complement back to the true (uncomplemented)
binary form, use the two procedures described previously. To go from the 1s
complement back to true binary, reverse all the bits. To go from the 2's complement
form back to true binary, take the 1's complement and add 1 to the least significant bit.

REPRESENTATION OF SIGNED NUMBERS

Computer, must be able to handle both positive and negative numbers. There
are three basic ways to represent signed numbers; sign-magnitude, 1’s complement
and 2’s complement.

Sign-Magnitude

The number consists of two parts: the MSB (most significant bit) represents
the sign and the other bits represent the magnitude of the number. If the sign bit is 1

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 15 –

the number is negative and if it is 0 the number is positive. To illustrate this let us
have an example.

Example:

Express each of the following numbers as an 8-bit number in sign-magnitude form:

-30, 30, -121 and +99.

Solution:

-30 = 1 0011110 (The leftmost 1 indicates that the number is negative. The remaining
7-bits carry the magnitude of 30)

30 = 0 0011110 (The only difference between –30 and +30 is the sign bit because the
magnitude bits are similar in both numbers.)

-121 = 1 1111001

99 = 0 1100011

Example:

Find the decimal value of each of the following numbers if they are expressed in sign-

magnitude form: 10111001 , 11111111 and 01111111.

Solution:

10111001 = -57 (The leftmost 1 indicates that the number is negative. The remaining
7-bits carry the magnitude of 57)

11111111 = -127 (The minimum number that can be represented in an 8-bit register
using sign-magnitude representation)

01111111 = +127 (The maximum number that can be represented in an 8-bit register
using sign-magnitude representation)

Range of numbers in Sign-Magnitude Representation:

In general for an n-bit number, the range of values that could be represented
using sign-magnitude notation is from –(2n-1-1) to +(2n-1-1). For example if n=8 the
range is from –127 to 127.

1’s Complement

Negative numbers are represented in 1’s complement format whereas positive
numbers are represented as the positive sign-magnitude numbers

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 16 –

Example:

Express each of the following numbers as an 8-bit number in 1’s complement form:

30, -30, -121 and +99.

Solution:

30 = 00011110

-30 = 11100001 (the number equals the 1’s complement of 30)

121 = 01111001 -121 = 10000110

99 = 01100011

Example:

Find the decimal value of each of the following numbers if they are expressed in 1’s

complement form: 10111001 , 11111111 ,10000000 and 01111111.

Solution:

10111001 = -01000110 = -70 (The leftmost 1 indicates that the number is negative.
Take the 1’s complement of the number to get the
magnitude of 70)

11111111 = -00000000 = -0 (That is one of the problem of 1’s complement
representation, there are two representations of zero a
positive one and a negative one.)

01111111 = +127 (The maximum number that can be represented in an 8-bit register
using 1’s complement representation)

10000000 = -01111111 = -127 (The maximum number that can be represented in an 8-
bit register using 1’s complement representation)

Range of numbers in 1’s complement Representation:

It is exactly the same as the range of numbers in sign-magnitude.

2’s Complement

Negative numbers are represented in 2’s complement format whereas positive
numbers are represented exactly the same way as in sign-magnitude and in 1’s
complement.

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 17 –

Example:

Express each of the following numbers as an 8-bit number in 2’s complement form:

30, -30, -121 and +99.

Solution:

30 = 00011110

-30 = 11100010 (the number equals the 2’s complement of 30)

121 = 01111001 -121 = 10000111

99 = 01100011

Example:

Find the decimal value of each of the following numbers if they are expressed in 2’s

complement form: 10111001 , 11111111 ,10000000 and 01111111.

Solution:

10111001 = -01000111 = -71 (The leftmost 1 indicates that the number is negative.
Take the 2’s complement of the number to get the
magnitude of 71)

11111111 = -00000001 = -1 (The problem of two representations of zero is not found
in 2’s complement.)

01111111 = +127 (The maximum number that can be represented in an 8-bit register
using 2’s complement representation)

10000000 = -10000000 = -128 (The minimum number that can be represented in an 8-
bit register using 2’s complement representation)

Range of numbers in 2’s complement Representation:

In general for an n-bit number, the range of values that could be represented
using 2’s complement notation is from –(2n-1) to +(2n-1-1). For example if n=8 the
range is from –128 to 127.

You may note from the previous examples that a binary number may have
different values depending on the type of representation used to interpret this number.
The following table clarifies this fact for a 4-bit binary number.

 unsigned Sign-magnitude 1’s complement 2’s complement

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 18 –

0000 0 0 0 0
0001 1 1 1 1
0010 2 2 2 2
0011 3 3 3 3
0100 4 4 4 4
0101 5 5 5 5
0110 6 6 6 6
0111 7 7 7 7
1000 8 -0 -7 -8
1001 9 -1 -6 -7
1010 10 -2 -5 -6
1011 11 -3 -4 -5
1100 12 -4 -3 -4
1101 13 -5 -2 -3
1110 14 -6 -1 -2
1111 15 -7 -0 -1

2's Complement Evaluation:

Positive and negative numbers in the 2's complement system are evaluated by

summing the weights in all bit positions where there are 1s and ignoring those

positions where there are zeros. The weight of the sign bit in a negative number is

given a negative value.

EXAMPLE

Determine the decimal values of the signed binary numbers expressed in 2's

complement: (a) 01010110 (b) 10101010.

Solution

(a) The bits and their powers-of-two weights for the positive number are as follows:

-27 26 25 24 23 22 21 2°

0 1 0 1 0 1 1 0

Summing the weights where there are 1's,

64 + 16 + 4 + 2 = +86

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 19 –

(b) The bits and their powers-of-two weights for the negative number are as follows.

Notice that the negative sign bit has a weight of —27 = —128.

-27 26 25 24 23 22 21 2°

1 0 1 0 1 0 1 0

Summing the weights where there are 1's,

-128 + 32 + 8 + 2 = -86

From these examples, you can see one of the reasons why the 2's complement

system is preferred for representing signed numbers: It simply requires a summation

of weights regardless of whether the number is positive or negative. The sign-

magnitude system requires two steps—sum the weights of the magnitude bits and

examine the sign bit to determine if the number is positive or negative. The 1's

complement system requires adding 1 to the summation of weights for negative

numbers but not for positive numbers.

Also, the 1's complement system is generally not used because two representations of

zero (00000000 or 11111111) are possible.

The 2's complement system is preferred and is used in most computers because it

makes arithmetic operations easier, as you will see.

ARITHMETIC OPERATIONS WITH SIGNED NUMBERS

In the last section, you learned how signed numbers are represented in three
different systems. In this section, you will learn how signed numbers are added and
subtracted. Because the 2's complement system for representing signed numbers is the
most widely used in computers and microprocessor-based systems, the coverage in
this section is limited to 2 's complement arithmetic. The processes covered can be
extended to the other systems if necessary.

Addition

The two numbers in an addition are the addend and the augend. The result is
the sum. There are four cases that can occur when two signed binary numbers are
added:

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 20 –

1. Both numbers positive

2. Positive number with magnitude larger than negative number

3. Negative number with magnitude larger than positive number

4. Both numbers negative

Let's take one case at a time using 8-bit signed numbers as examples. The equivalent

decimal numbers are shown for reference.

Both numbers positive: 00000111 7

+ 00000100 + 4

 00001011 11

The sum is positive and is therefore in true (uncomplemented) binary.

Positive number with magnitude larger than negative number:

 00001111 15

+ 11111010 + -6

Discard carry —————1 00001001 9

The final carry bit is discarded. The sum is positive and therefore in true

(uncomplented) binary.

Negative number with magnitude larger than positive number:

 00010000 16

+ 11101000 + -24

 11111000 -8

The sum is negative and therefore in 2's complement form.

Both numbers negative: 11111011 —5

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 21 –

+ 11110111 + -9

Discard carry—————> 1 11110010 -14

The final carry bit is discarded. The sum is negative and therefore in 2's complement

form.In a computer, the negative numbers are stored in 2's complement form so, as

you can see, the addition process is very simple: Add the two numbers and discard

any final carry bit.

Overflow Condition

When two numbers are added and the number of bits required to represent the
sum exceeds the number of bits in the two numbers, an overflow results as indicated
by an incorrect sign bit. An overflow can occur only when both numbers are positive
or both numbers are negative. The following 8-bit example will illustrate this
condition.

 01111101 125

+ 00111010 + 58

 10110111 183

Sign incorrect Magnitude incorrect

In this example the sum of 183 requires eight magnitude bits. Since there are seven

magnitude bits in the numbers (one bit is the sign), there is a carry into the sign bit

which produces the overflow indication.

Numbers Are Added Two at a Time

Subtraction

Subtraction is a special case of addition. For example, subtracting +6 (the
subtrahend from +9 (the minuend) is equivalent to adding —6 to +9. Basically, the
subtraction operation changes the sign of the subtrahend and adds it to the minuend.
The result of a subtraction is called the difference.

The sign of a positive or negative binary number is changed by taking its 2's

complement.

For example, taking the 2's complement of the positive number 00000100 (+4), you

get 11111100, which is —4 as the following sum-of-weights evaluation shows:

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 22 –

-128 + 64 + 32 + 16 + 8 + 4 = -4

As another example, taking the 2's complement of the negative number 11101101 (—

19), you get 00010011, which is +19 as the following evaluation shows:

16 + 2+ 1 = 19

Since subtraction is simply an addition with the sign of the subtrahend changed, the

process is stated as follows:

To subtract two signed numbers, take the 2's complement of the subtrahend and

add, discarding any final carry bit.

EXAMPLE

Perform each of the following subtractions of the signed numbers:

(a) 00001000 - 00000011 (b) 00001100 - 11110111

(c) 11100111 - 00010011 (d) 10001000 - 11100010

Solution

Like in other examples, the equivalent decimal subtractions are given for reference.

(a) In this case, 8 - 3 = 8 + (-3) = 5.

 00001000 Minuend (+8)

+ 11111101 2's complement of subtrahend (-3)

Discard carry —> 1 00000101 Difference (+ 5)

 (b) In this case, 12 - (-9) = 12 + 9 = 21.

 00001100 Minuend (+12)

+ 00001001 2's complement of subtrahend (+9)

 00010101 Difference (+21)

(c) In this case, -25 - (+19) = -25 + (-19) = -44.

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 23 –

 11100111 Minuend (-25)

 + 11101101 2's complement of subtrahend (-19)

Discard carry —>1 11010100 Difference (-44)

(d) In this case, -120 - (-30) = -120 + 30 = -90

 10001000 Minuend (-120)

+ 00011110 2's complement of subtrahend (+30)

 10100110 Difference (-90)

BINARY CODED DECIMAL (BCD)

The binary coded decimal system is used to represent each of the ten decimal
digits as a 4-bit binary code. This code is useful in dealing with decimal numbers. As
you know a 4-bit binary number can represent up to 16 numbers (0-15) but there are
only 10 decimal digits (0-9), so we have 6 representations (10-15) which are not used
in the BCD code.

To convert a decimal number to BCD replace each digit with a corresponding
4-bit binary number even if the number can be represented by less than 4 bits. To
convert a BCD number into decimal make groups of 4 bits starting from the LSB, if
necessary add extra zeroes to the left then convert each 4-bits to decimal.

Decimal BCD
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Example:

Convert the following decimal numbers to BCD: 125, 909 and 1476.

Solution:

(125)10 = 0001 0010 0101

 (909)10 = 1001 0000 1001

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 24 –

(1476)10 = 0001 0100 0111 0110

Example:

Convert the following BCD numbers to decimal: 100000101001, 1101110010,

1010000101 and 110010000101.

Solution:

1000 0010 1001 = (825)10

0011 0111 0010 = (372)10

0010 1000 0101= (285)10

1100 1000 0101 = This number can not be a BCD number because 1100 is the binary
representation of 12 and this is not a valid decimal digit.

THE ASCII CODE

To get information into and out of a computer, we need more than just numeric
representations; we also have to take care of all the letters and symbols used in day-to-
day processing. Information such as names, addresses, and item descriptions must be
input and output in a readable format. But remember that a digital system can deal
only with 1's and 0's. Therefore, we need a special code to represent all alphanumeric
data (letters, symbols, and numbers).

Most industry has settled on an input/output (I/O) code called the American
Standard Code for Information Interchange (ASCII). The ASCII code uses 7 bits to
represent all the alphanumeric data used in computer I/O. Seven bits will yield 128
different code combinations, as listed in the following Table. Each time a key is
depressed on an ASCII keyboard, that key is converted into its ASCII code and
processed by the computer. Then, before outputting the computer contents to a display
terminal or printer, all information is converted from ASCII into standard English.

ASCII control characters

Name Decimal Hex ..Key, Description

NUL 0 00 CTRL@ null character
SOH 1 01 CTRL A start of header
STX 2 02 CTRL B start of text
ETX 3 03 CTRL C end of text
EOT 4 04 CTRL D end of transmission
ENQ 5 05 CTRL E enquire
ACK 6 06 CTRL F acknowledge
BEL 7 07 CTRL G bell

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 25 –

BS 8 08 CTRL H backspace
HT 9 09 CTRL I horizontal tab
LF 10 OA CTRL J line feed
VT 11 OB CTRL K vertical tab
FF 12 OC CTRL L form feed (new page)
CR 13 OD CTRL M carriage return
SO 14 OE CTRL N shift out
SI 15 OF CTRL O shift in
DLE 16 10 CTRL P data link escape
DC1 17 11 CTRL Q device control 1
DC2 18 12 CTRL R device control 2
DC3 19 13 CTRL S device control 3
DC4 20 14 CTRL T device control 4
NAK 21 15 CTRL U negative acknowledge
SYN 22 16 CTRL V synchronize
ETB 23 17 CTRL W end of transmission block
CAN 24 18 CTRL X cancel
EM 25 19 CTRL Y end of medium
SUB 26 1A CTRL Z substitute
ESC . 27 1B CTRL [escape
FS 28 1C CTRL / file separator
GS 29 ID CTRL] group separator
RS 30 1E CTRL^ record separator
US 31 IF CTRL_ unit separator

EXTENDED ASCII CHARACTERS

In addition to the 128 standard ASCII characters, there are an additional 128
characters that were adopted by IBM for use in their PCs. Because of the popularity of
the PC, these particular extended ASCII characters are also used in applications other
than PCs and have become essentially an unofficial standard.

The extended ASCII characters are represented by an 8-bit code series from
hexadecimal 80 to hexadecimal FF. The extended ASCII contains characters in the
following general categories:

1. Foreign (non-English) alphabetic characters

2. Foreign currency symbols

3. Greek letters

4. Mathematical symbols

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 26 –

5. DRAWING CHARACTERS

6. Bar graphing characters

7. Shading characters

Extended ASCII characters

Sym
bol

Dec Hex Sy
mb
ol

Dee Hex Sy
mb
ol

Dec Hex Sym
bol

Dec Hex

Ç 128 80 á 160 A0 └ 192 C0 α 224 E0
ü 129 81 í 161 Al ┴ 193 Cl β 225 E1
é 130 82 ó 162 A2 ┬ 194 C2 Γ 226 E2
â 131 83 ú 163 A3 ├ 195 C3 π 227 E3
ä 132 84 ñ 164 A4 ┤ 196 C4 Σ 228 E4
à 133 85 Ñ 165 A5 ┼ 197 C5 б 229 E5
å 134 86 ā 166 A6 ╞ 198 C6 μ 230 E6
ç 135 87 ō 167 A7 ╟ 199 C7 τ 231 E7
ê 136 88 ¿ 168 A8 ╚ 200 C8 Φ 232 E8
ë 137 89 ⌐ 169 A9 ╔ 201 C9 Θ 233 E9
è 138 8A ¬ 170 AA ╩ 202 CA Ω 234 EA
ï 139 8B ½ 171 AB ╦ 203 CB δ 235 EB
î 140 8C ¼ 172 AC ╠ 204 CC ∞ 236 EC
ì 141 8D ¡ 173 AD ═ 205 CD Φ 237 ED
Ä 142 8E « 174 AE ╬ 206 CE ε 238 EE
Å 143 8F » 175 AF ╧ 207 CF ∩ 239 EF
É 144 90 ░ 176 B0 ╨ 208 DO ≡ 240 F0
æ 145 91 ▒ 177 B1 ╤ 209 Dl ± 241 F1
Æ 146 92 ▓ 178 B2 ╥ 210 D2 ≥ 242 F2
ô 147 93 │ 179 B3 ╙ 211 D3 ≤ 243 F3
ö 148 94 ┤ 180 B4 ╘ 212 D4 ∫ 244 F4
ò 149 95 ╡ 181 B5 ╒ 213 D5 ÷ 245 F5
û 150 96 ╢ 182 B6 ╓ 214 D6 ≈ 246 F6
ù 151 97 ╖ 183 B7 ╫ 215 D7 247 F7
ÿ 152 98 ╡ 184 B8 ╪ 216 D8 248 F8
Ö 153 99 ╣ 185 B9 ┘ 217 D9 ˚ 249 F9
Ü 154 9A ║ 186 BA ┌ 218 DA • 250 FA
ǿ 155 9B ╗ 187 BB █ 219 DB . 251 FB
£ 156 9C ╝ 188 BC ▄ 220 DC √ 252 FC
¥ 157 9D ╜ 189 BD ▌ 221 DD η 253 FD
P, 158 9E ╛ 190 BE ▐ 222 DE ² 254 FE
ƒ 159 9F ┐ 191 BF ▀ 223 DF ▪ 255 FF

The Excess-3 Code

Excess-3 is a digital code related to BCD that is derived by adding 3 to each
decimal digit and then converting the result of that addition to 4-bit binary. Since no
definite weights can be assigned to the four digit position, excess-3 is an unweighted
code that has advantages in certain arithmetic operations. The excess-3 code for
decimal 2 is 2+3=5 = (0101)2 The excess-3 code for each decimal digit is found by
the same procedure. The entire code is shown in the following Table.

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 27 –

Decimal Binary Excess-3

0 0000 0011
1 0001 0100
2 0010 0101
3 0011 0110
4 0100 0111
5 0101 1000
6 0110 1001
7 0111 1010
8 1000 1011
9 1001 1100

Notice that ten of the possible 16 code combinations are used in the excess-3 code. The six
invalid combinations are 0000, 0001, 0010, 1101, 1110, and 1111.

Example:

Convert each of the following decimal numbers to excess-3 code:

(A) 25 (B) 630

Solution

First, add 3 to each digit in the decimal number, and then convert each resulting 4-bit sum to
its equivalent binary code.

(A) 25 = 01011000 ADD THREE TO BOTH DIGITS TO BE 5 (0101) AND 8
(1000) THEN PUT THE REPRESENTATION OF ALL
DIGITS TOGETHER.

(b) 630 = 100101100011 as before 6 → 9 = (1001)2, 3 → 6 = (0110)2 and 0 → 3 =
(0011)2.

Self-Complementing Property

The key feature of the excess-3 code is that it is self-complementing. This means that the 1's
complement of an excess-3 number is the excess-3 code for the 9's complement of the
corresponding decimal number. The 9's complement of a decimal number is found by
subtracting each digit in the number from 9. For example, the 9's complement of 4 is 5. The
excess-3 code for decimal 4 is 0111. The 1's complement of this is 1000, which is the excess-
3 code for the decimal 5 (and 5 is the 9's complement of 4).

The usefulness of the 9's complement and thus excess-3 stems from the fact that subtraction
of a smaller decimal number from a larger one can be accomplished by adding the 9's
complement (1's complement of the excess-3 code) of the subtrahend (in this case the smaller
number) to the minuend and then adding the carry to the result. When subtracting a larger

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 28 –

number from a smaller one, there is no carry, and the result is in 9's complement form and
negative. This procedure has a distinct advantage over BCD in certain types of arithmetic
logic.

ERROR-DETECTION CODE

Binary information can be transmitted from one location to another by electric wires or other
communication medium. Any external noise introduced into the physical communication
medium may change some of the bits from 0 to 1 or vice versa. The purpose of an error-
detection code is to detect such bit-reversal errors. One of the most common ways to achieve
error detection is by means of a parity bit. A parity bit is an extra bit included with a message
to make the total number of 1's transmitted either odd or even. A message of four bits and a
parity bit P are shown in Table. If an odd parity is adopted, the P bit is chosen such that the
total number of 1's is odd in the five bits that constitute the message and P. If an even parity is
adopted, the P bit is chosen so that the total number of 1's in the five bits is even. Even parity
being more common than odd parity.

The parity bit is helpful in detecting errors during the transmission of information from one
location to another. This is done in the following manner. An even parity bit is generated in
the sending end for each message transmission. The message, together with the parity bit, is
transmitted to its destination. The parity of the received data is checked.

Parity bit

Odd parity Even parity
Message P Message P
0000 1 0000 0
0001 0 0001 1
0010 0 0010 1
0011 1 0011 0
0100 0 0100 1
0101 1 0101 0
0110 1 0110 0
0111 0 0111 1
1000 0 1000 1
1001 1 1001 0
1010 1 1010 0
1011 0 1011 1
1100 1 1100 0
1101 0 1101 1
1110 0 1110 1

1111 1 1111 0

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 29 –

QUESTIONS

1) Convert the following unsigned binary numbers to decimal, octal, hexadecimal and
BCD if possible.

i. 10110010011 ii 110000111000 iii 1000111011
2) Convert the following decimal numbers to binary, octal, hexadecimal and BCD.

i. 739 ii 504 iii 861
3) What is the minimum number of bits to represent each of the following unsigned

decimal numbers: 5110, 256,451228 and 700.
4) Add, multiply, subtract (A-B) and divide (A/B) each of the following binary numbers:

i. A = 11010011 B = 1101
ii. A = 101101 B= 101

iii. A = 11101001 B = 1101
iv. Represent each of the following decimal numbers (when possible) as an 8-bit

number in each of the following formats: sign-magnitude, 1’s complement and 2’s
complement.

i 134 ii -54 iii -128 iv –150 v 328

5) Represent each of the following decimal numbers (when possible) as a 16-bit number
in each of the following formats: sign-magnitude, 1’s complement and 2’s complement.

i 134 ii -54 iii -128 iv –150 v 328 vi 1023

6) For each of the following signed decimal numbers, what is the minimum number of
bits to represent each of them if you are using: sign-magnitude format, 1’s complement
and 2’s complement formats.

i 134 ii -54 iii -128 iv –150 v 328 vi 1023

7) Determine the decimal value of the following signed binary numbers if they are
expressed in sign-magnitude, 1’s complement and 2’s complement.

i 10010011 ii 01011010 iii 10000110 iv 11010001

8) If A is a binary number, let COMP(A) be the 2’s complement of A. prove that
COMP(COMP(A)) = A.

9) Show that overflow occurs in 2’s complement adddition when the carry-out of the left-
most column is the complement of the carry-out of the column next to the left-most.
Use four different examples to prove it.

10) An imaginary frog hops half the distance to its goal with eqach jump. Its first jump is
32cm. How far will it have gone after four jumps? Express your answer in binary and
in decimal.

11) How many different values can be formed with an eight-bit code? How many
different values can be formed if the most significant bit is always zero?

12) There are about 3000 characters in written Japanese. How many bits minimum would
it take to represent the set of Japanese characters?

13) Perform the following arithmetic operations by changing the decimal numbers to 8-bit
binary in 2’s complement representation. Check your answer by changing the output
from 2’s complement to decimal.

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 30 –

9 – 15, -28 – 64, -127 + 93, -50 + 100

14) Perform the following operations if the numbers are in 2’s complement representation.
Check for your answer by transforming to decimal. Check if there is an overflow.

i 10010101 – 11010110 ii 01101100 + 10111111

iii 10100011 + 11001100 iv 00111100 + 01010101

15) What is meant by the overflow?
16) Perform the following operations if the numbers are in 2’s complement representation.

Indicate if there is an overflow or not. Check for your answer by transforming to
decimal.

i 01110101 + 01101010 ii 10010000 – 01000111

iii 11010011 – 10110000 iv 01100000 - 00111111

17) Perform the following operations if the numbers are in 2’s complement representation.
Extend all the numbers to be represented in 8-bits before performing the operation.
Indicate if there is an overflow or not. Check for your answer by transforming to
decimal.

i 1011 – 0110 ii 010111 – 1111

iii 0110 – 0101010 iv 1001 – 110010

v 10101 + 0110 vi 10111 + 0111

vii 1110 + 0101010 viii 11001 + 100010

18) Add an 8th bit for the following binary numbers to act once as an even parity and
another time as an odd parity.

i 1010001 ii 1111000

iii 1101110 iv 1110111

19) Convert the following decimal numbers to BCD and excess-3 .

102, 897, 954, 045, 621 and 378

20) Writ the following phrase by representing each alphanumeric in ASCII code. Use hex
numbers for each character.

“The Little Brown Fox Jumps Over The Lazy Dog...1,2,3,4,5,6,7,8,9”

21) What is the special property of excess-3 code that makes it suitable to represent
decimal numbers.

CHAPTER 1 NUMBER SYSTEMS AND CODES

- 31 –

22) Determine the signed decimal value of 10010010for each of the following
representations:

a- Sign-magnitude representation.
b- 2’s complement representation.
c- BCD representation.
d- Excess representation

23) Determine the signed decimal value of 01010110 for each of the following
representations:

a- Sign-magnitude representation.
b- 2’s complement representation.
c- BCD representation.

24) -Perform the subtraction of (36 – 99)10 using the 2’s complement representation.
Verify your answer by converting into decimal.

CHAPTER 2 LOGIC GATES

- 32 –

CHAPTER 2

LOGIC GATES

Boolean Variables & Truth Tables

Boolean algebra differs in a major way from ordinary algebra in that boolean constants and
variables are allowed to have only two possible values, 0 or 1.

Boolean 0 and 1 do not represent actual numbers but instead represent the state of a voltage
variable, or what is called its logic level.

Some common representation of 0 and 1 is shown in the following diagram.

LOGIC 0 LOGIC 1
False True
Off On
Low High
No Yes
Open Switch Close Switch

In boolean algebra, there are three basic logic operations: OR, AND and NOT. These logic
gates are digital circuits constructed from diodes, transistors, and resistors connected in such a
way that the circuit output is the result of a basic logic operation (OR, AND, NOT) performed
on the inputs.

Truth Table

A truth table is a means for describing how a logic circuit's output depends on the logic levels
present at the circuit's inputs.

In the following two-inputs logic circuit, the table lists all possible combinations of logic
levels present at inputs A and B along with the corresponding output level X.

CHAPTER 2 LOGIC GATES

- 33 –

When either input A OR B is 1, the output X is 1. Therefore the function is an OR gate.

OR Operation

The expression X = A + B reads as "X equals A OR B".
The + sign stands for the OR operation, not for ordinary addition.

The OR operation produces a result of 1 when any of the input variable is 1.

The OR operation produces a result of 0 only when all the input variables are 0.

An example of three input OR gate and its truth table is as follows:

With the OR operation, 1 + 1 = 1, 1+ 1 + 1 = 1 and so on.

CHAPTER 2 LOGIC GATES

- 34 –

Timing Diagrams of OR gates

A timing diagram is a graph that displays the relationship of two or more waveforms with
respect to time. The following example explains the operation of an OR gate with pulsed
inputs.

Example

If the two input waveforms A and B are applied to an OR gate, what is the resulting output
waveform?

An application: Alarm System

A simplified portion of an intrusion detection and alarm system is shown. This system could
be used for one room in a home a room with two windows and a door. The sensors are
magnetic switches that produce a HIGH output when open and a LOW output when closed.
As long as the windows and the door are secured, the switches are closed and all three of the
OR gate inputs are LOW. When one of the windows or the door is opened, a HIGH is
produced on that input to the OR gate and the gate output goes HIGH. It then activates an
alarm circuit to warn of the intrusion.

CHAPTER 2 LOGIC GATES

- 35 –

AND Operation

The expression X = A • B reads as "X equals A AND B".
The multiplication sign stands for the AND operation, same for ordinary multiplication of 1s
and 0s.

The AND operation produces a result of 1 occurs only for the single case when all of the
input variables are 1.

The output is 0 for any case where one or more inputs are 0

An example of three input AND gate and its truth table is as follows:

With the AND operation, 1•1 = 1, 1•1•1 = 1 and so on.

CHAPTER 2 LOGIC GATES

- 36 –

Timing Diagrams of AND gates

To examine the operation of the AND gate, study the inputs at a certain time to determine the
corresponding output.

Example

If the two input waveforms A and B are applied to an AND gate, what is the resulting output
waveform?

The output waveform is HIGH only when both inputs are high as shown.

An application: A Seat Belt Alarm System

an AND gate is used in a simple car seat belt alarm system to detect when the ignition switch
is on and the seat belt is unbuckled. If the ignition switch is on, a HIGH is produced on input
A of the AND gate. If the seat belt is not properly buckled, a HIGH is produced on input B of
the AND gate. Also, when the ignition switch is turned on, a timer is started that produces a
HIGH on input C for 30 s.

If all three conditions exist—that is, if the ignition is on and the seat belt is unbuckled and the
timer is running—the output of the AND gate is HIGH, and an audible alarm is energized to
remind the driver.

CHAPTER 2 LOGIC GATES

- 37 –

NOT Operation

The NOT operation is unlike the OR and AND operations in that it can be performed on a
single input variable. For example, if the variable A is subjected to the NOT operation, the
result x can be expressed as

x = A'

where the prime (') represents the NOT operation. This expression is read as:

x equals NOT A

x equals the inverse of A

x equals the complement of A

Each of these is in common usage and all indicate that the logic value of x = A' is opposite to
the logic value of A.

The truth table of the NOT operation is as follows:

1' = 0 because NOT 1 is 0

0' = 1 because NOT 0 is 1

The NOT operation is also referred to as inversion or complementation, and these terms are
used interchangeably.

CHAPTER 2 LOGIC GATES

- 38 –

NOR Operation

NOR and NAND gates are used extensively in digital circuitry. These gates combine the basic
operations AND, OR and NOT, which make it relatively easy to describe then using Boolean
Algebra.

NOR is the same as the OR gate symbol except that it has a small circle on the output. This
small circle represents the inversion operation. Therefore the output expression of the two
input NOR gate is:

X = (A + B)'

An example of three input OR gate can be constructed by a NOR gate plus a NOT gate:

Negative AND equivalent of a NOR gate

The truth table of the NOR gate shows that a HIGH is produced on the gate output only if all
of the inputs are LOW. From this viewpoint, the NOR gate can be used for an AND operation
that requires all LOW inputs to produce a HIGH output. This mode of operation is called

CHAPTER 2 LOGIC GATES

- 39 –

negative-AND. The term negative means that the inputs are defined to be in the active state
when LOW.

In the operation of a 2-input NOR gate functioning as a negative-AND gate, output X is
HIGH if both inputs/A and B are LOW.

An application: An aircraft landing indicator

Problem: In an aircraft, as part of its functional monitoring system, a circuit is required to
indicate the status of the landing gear prior to landing. A green LED display turns on if all
three gears are properly extended when the "gear down" switch has been activated in
preparation for landing. A red LED display turns on if any of the gears fail to extend properly
prior to landing. When a landing gear is extended, its sensor produces a LOW voltage. When
a landing gear is retracted, its sensor produces a HIGH voltage. Implement a circuit to meet
this requirement.

Solution Power is applied to the circuit only when the "gear down" switch is activated. Use a
NOR gate for each of the two requirements as shown in figure. One NOR gate operates as a
negative-AND to detect a LOW from each of the three landing geal sensors. When all three of
the gate inputs are LOW, the three landing gear are properly extended and the resulting HIGH
output from the negative-AND gate turns on the green LED display. The other NOR gate
operates as a NOR to detect if one or more of the landing gear remain retracted when the
"gear down" switch is activated. When one or more of the landing gear remain retracted, the
resulting HIGH from the sensor is detected by the NOR gate, which produces a LOW output
to turn on the red LED warning display.

CHAPTER 2 LOGIC GATES

- 40 –

NAND Operation

NAND is the same as the AND gate symbol except that it has a small circle on the output.
This small circle represents the inversion operation. Therefore the output expression of the
two input NAND gate is:

X = (AB)'

CHAPTER 2 LOGIC GATES

- 41 –

Negative OR Equivalent Operation of the NAND Gate

In the NAND gate's operation, one or more LOW inputs produce a HIGH output. The
previous truth table shows that output X is HIGH (1) when any of the inputs, A and B, are
LOW (0). From this viewpoint, the NAND gate can be used for an OR operation that requires
one or more LOW inputs to produce a HIGH output. This mode of operation is referred to as
negative-OR. The term negative means that the inputs are defined to be in the active state
when LOW.

In the operation of a 2-input NAND gate functioning as a negative-OR gate, output X is
HIGH if either input A or input B is LOW, or if both A and Bare LOW.

An application: A Manufacturing Plant Tank Indicator

Problem: A manufacturing plant uses two tanks to store a certain liquid chemical that is
required in a manufacturing process. Each tank has a sensor that detects when the chemical
level drops to 25% of full. The sensors produce a 5 V level when the tanks are more than one-
quarter full. When the volume of chemical in a tank drops to one-quarter full, the sensor puts
out a 0 V level.

It is required that a single green light-emitting diode (LED) on an indicator panel show when
both tanks are more than one quarter full. Show how a NAND gate can be used to implement
this function.

Solution: As long as both sensor outputs are HIGH, indicating that both tanks are more than
one quarter full, the NAND gate output is LOW. The green LED circuit is arranged so that a
low voltage turns it ON.

CHAPTER 2 LOGIC GATES

- 42 –

THE EXCLUSIVE-OR AND EXCLUSIVE-NOR GATES

The exclusive-OR and exclusive-NOR gates are formed by the combination of other logic
gates you have already studied. Because of their versatile range of applications, they are
treated as basic gates and given their own symbols.

The Exclusive- OR Gate

The symbol of exclusive-OR (XOR for short) is shown along with its truth table.

 Inputs output

 A B X
 0 0 0
 0 1 1
 1 0 1
 1 1 0

The symbol used to express the XOR is: X = AB. From the truth table, the operation of the
XOR can be summarized as:

In an XOR gate operation, output X is HIGH if input A is LOW and input B is HIGH,
or if input A is HIGH and input B is LOW; X is LOW if A and B are both HIGH or
both LOW.

The Exclusive-NOR Gate

The symbol of exclusive-NOR (XNOR for short or equivalence) is shown along with its truth
table.

 Inputs output

 A B X
 0 0 1
 0 1 0
 1 0 0
 1 1 1

The symbol used to express the XNOR is: X = AB. From the truth table, the operation of
the XNOR can be summarized as:

In an XNOR gate operation, output X is LOW if input A is LOW and input B is HIGH,
or if input A is HIGH and input B is LOW; X is HIGH if A and B are both HIGH or
both LOW.

It is obvious that the XNOR is the complement of the XOR which is the reason of the bubble
in the symbol of the XNOR.

CHAPTER 2 LOGIC GATES

- 43 –

Timing diagram

EXAMPLE:

INTEGRATED CIRCUIT LOGIC FAMILIES

There are several different families of logic gates. Each family has its capabilities and
limitations, its advantages and disadvantages. The following list describes the main logic
families and their characteristics. You can follow the links to see the circuit construction of
gates of each family.

Diode Logic (DL)

Diode logic gates use diodes to perform AND and OR logic functions. Diodes have the
property of easily passing an electrical current in one direction, but not the other. Thus, diodes
can act as a logical switch.

Diode logic gates are very simple and inexpensive, and can be used effectively in specific
situations. However, they cannot be used extensively, as they tend to degrade digital signals
rapidly. In addition, they cannot perform a NOT function, so their usefulness is quite limited.

In the figure above, you see a basic Diode Logic OR gate. We'll assume that a logic 1 is
represented by +5 volts, and a logic 0 is represented by ground, or zero volts. In this figure, if

CHAPTER 2 LOGIC GATES

- 44 –

both inputs are left unconnected or are both at logic 0, output Z will also be held at zero volts
by the resistor, and will thus be a logic 0 as well. However, if either input is raised to +5 volts,
its diode will become forward biased and will therefore conduct. This in turn will force the
output up to logic 1. If both inputs are logic 1, the output will still be logic 1. Hence, this gate
correctly performs a logical OR function.

The figure above shows the equivalent AND gate. We use the same logic levels, but the
diodes are reversed and the resistor is set to pull the output voltage up to a logic 1 state. For
this example, +V = +5 volts, although other voltages can just as easily be used. Now, if both
inputs are unconnected or if they are both at logic 1, output Z will be at logic 1. If either input
is grounded (logic 0), that diode will conduct and will pull the output down to logic 0 as well.
Both inputs must be logic 1 in order for the output to be logic 1, so this circuit performs the
logical AND function.

Resistor-Transistor Logic (RTL)

Resistor-transistor logic gates use Transistors to combine multiple input signals, which also
amplify and invert the resulting combined signal. Often an additional transistor is included to
re-invert the output signal. This combination provides clean output signals and either
inversion or non-inversion as needed.

RTL gates are almost as simple as DL gates, and remain inexpensive. They also are handy
because both normal and inverted signals are often available. However, they do draw a
significant amount of current from the power supply for each gate. Another limitation is that
RTL gates cannot switch at the high speeds used by today's computers, although they are still
useful in slower applications.

CHAPTER 2 LOGIC GATES

- 45 –

In this circuit, each transistor has its own separate input resistor, so each is controlled by a
different input signal. However, the only way the output can be pulled down to logic 0 is if
both transistors are turned on by logic 1 inputs. If either input is a logic 0 that transistor
cannot conduct, so there is no current through either one. The output is then a logic 1. This is
the behavior of a NAND gate. Of course, an inverter can also be included to provide an AND
output at the same time.

Diode-Transistor Logic (DTL)

By letting diodes perform the logical AND or OR function and then amplifying the result with
a transistor, we can avoid some of the limitations of RTL. DTL takes diode logic gates and
adds a transistor to the output, in order to provide logic inversion and to restore the signal to
full logic levels.

The above gate t is a DL OR gate followed by an inverter. The OR function is still performed
by the diodes. However, regardless of the number of logic 1 inputs, there is certain to be a
high enough input voltage to drive the transistor into saturation. Only if all inputs are logic 0
will the transistor be held off. Thus, this circuit performs a NOR function.

The advantage of this circuit over its RTL equivalent is that the OR logic is performed by the
diodes, not by resistors. Therefore there is no interaction between different inputs, and any
number of diodes may be used. A disadvantage of this circuit is the input resistor to the
transistor. Its presence tends to slow the circuit down, thus limiting the speed at which the
transistor is able to switch states.

Transistor-Transistor Logic (TTL)

The physical construction of integrated circuits made it more effective to replace all the input
diodes in a DTL gate with a transistor, built with multiple emitters. The result is transistor-
transistor logic, which became the standard logic circuit in most applications for a number of
years.

CHAPTER 2 LOGIC GATES

- 46 –

As the state of the art improved, TTL integrated circuits were adapted slightly to handle a
wider range of requirements, but their basic functions remained the same. These devices
comprise the 7400 family of digital ICs.

The preceding figure shows an inverter designed with TTL logic.

The preceding figure shows a 4-input NAND gate designed with TTL logic.

Emitter-Coupled Logic (ECL)

Also known as Current Mode Logic (CML), ECL gates are specifically designed to operate at
extremely high speeds, by avoiding the "lag" inherent when transistors are allowed to become
saturated. Because of this, however, these gates demand substantial amounts of electrical
current to operate correctly.

CHAPTER 2 LOGIC GATES

- 47 –

CMOS Logic

One factor is common to all of the logic families we have listed above: they use significant
amounts of electrical power. Many applications, especially portable, battery-powered ones,
require that the use of power be absolutely minimized. To accomplish this, the CMOS
(Complementary Metal-Oxide-Semiconductor) logic family was developed. This family uses
enhancement-mode MOSFETs as its transistors, and is so designed that it requires almost no
current to operate.

CMOS gates are, however, severely limited in their speed of operation. Nevertheless, they are
highly useful and effective in a wide range of battery-powered applications.

CMOS logic is a newer technology, based on the use of complementary MOS transistors to
perform logic functions with almost no current required. This makes these gates very useful in
battery-powered applications. The fact that they will work with supply voltages as low as 3
volts and as high as 15 volts is also very helpful.

CMOS gates are all based on the fundamental inverter circuit shown above. Note that both
transistors are enhancement-mode MOSFETs; one N-channel with its source grounded, and
one P-channel with its source connected to +V. Their gates are connected together to form the
input, and their drains are connected together to form the output.

The two MOSFETs are designed to have matching characteristics. Thus, they are
complementary to each other. When off, their resistance is effectively infinite; when on, their
channel resistance is about 200 . Since the gate is essentially an open circuit it draws no
current, and the output voltage will be equal to either ground or to the power supply voltage,
depending on which transistor is conducting.

When input A is grounded (logic 0), the N-channel MOSFET is unbiased, and therefore has
no channel enhanced within itself. It is an open circuit, and therefore leaves the output line
disconnected from ground. At the same time, the P-channel MOSFET is forward biased, so it
has a channel enhanced within itself. This channel has a resistance of about 200 , connecting
the output line to the +V supply. This pulls the output up to +V (logic 1).

When input A is at +V (logic 1), the P-channel MOSFET is off and the N-channel MOSFET
is on, thus pulling the output down to ground (logic 0). Thus, this circuit correctly performs
logic inversion, and at the same time provides active pull-up and pull-down, according to the
output state.

CHAPTER 2 LOGIC GATES

- 48 –

This concept can be expanded into NOR and NAND structures by combining inverters in a
partially series, partially parallel structure

Most logic families share a common characteristic: their inputs require a certain amount of
current in order to operate correctly. CMOS gates work a bit differently, but still represent a
capacitance that must be charged or discharged when the input changes state. The current
required to drive any input must come from the output supplying the logic signal. Therefore,
we need to know how much current an input requires, and how much current an output can
reliably supply, in order to determine how many inputs may be connected to a single output.

However, making such calculations can be tedious, and can bog down logic circuit design.
Therefore, we use a different technique. Rather than working constantly with actual currents,
we determine the amount of current required to drive one standard input, and designate that as
a standard load on any output. Now we can define the number of standard loads a given
output can drive, and identify it that way. Unfortunately, some inputs for specialized circuits
require more than the usual input current, and some gates, known as buffers, are deliberately
designed to be able to drive more inputs than usual. For an easy way to define input current
requirements and output drive capabilities, we define two new terms:

CHAPTER 2 LOGIC GATES

- 49 –

Fan-in

The number of standard loads drawn by an input to ensure reliable operation. Most inputs
have a fan-in of 1.

Fan-out

The number of standard loads that can be reliably driven by an output, without causing the
output voltage to shift out of its legal range of values.

Comparison of performance characteristics of CMOS, TTL and ECL
logic gates.

Technology CMOS
(silicon
gate)

CMOS
(metal
gate)

TTL
std

TTL
LS

TTL
S

TTL
ALS

TTL
AS

ECL

Device series 74HC 4000B 74 74LS 74S 74ALS 74AS 10KH
Power
dissipation:
Static

1 uW

10
mW

2 mW

19
mW

1 mW

8.5
mW

25 mW

At 100 kHz 0.17 mW 0.1 mW 10
mW

2 mW 19
mW

1 mW 8.5
mW

25 mW

Propagation
delay time

8 ns 50 ns 10 ns 10 ns 3 ns 4 ns 1.5 ns 1 ns

Fan-out 10 20 20 20 40

Std : standard
LS: Low power Schottky
 S: Schottky

ALS: Advanced Low power Schottky AS: Advanced Schottky

QUESTIONS

Choose the correct answers in the following questions.

1. Boolean algebra is different from ordinary algebra in which way?
i. Boolean algebra can represent more than 1 discrete level between 0 and 1

ii. Boolean algebra have only 2 discrete levels: 0 and 1
iii. Boolean algebra can describe up to 3 levels of logic levels
iv. They are actually the same
v. NA

The following 2 questions are referred to the below image:

CHAPTER 2 LOGIC GATES

- 50 –

2. What is the output X if both inputs A and B are 0?

i. 0
ii. 1

iii. I don’t know
iv. NA

3. What is the output X if A=1 and B=0?

i. 0
ii. 1

iii. I don’t know
iv. NA

4. For a three inputs (A,B C) OR gate, what inputs are needed if output=0?

i. A=0, B=0, C=1
ii. A=0, B=1, C=0

iii. A=1, B=1, C=1
iv. A=0, B=0,C=0
v. NA

The following 2 questions are referred to the below image:

5. What is the output X if input A=1, B=0 and C=1?

i. 0
ii. 1

iii. I don’t know
iv. NA

6. What inputs are needed if output=1?

i. A=0, B=0, C=0
ii. A=1, B=0, C=1

iii. A=0, B=1, C=0
iv. A=1, B=1,C=1

CHAPTER 2 LOGIC GATES

- 51 –

v. NA

The following 2 questions are related to the below image:

7. What is the ouput of the above gate if input A=0, B=1?

v. 0
vi. 1

vii. not sure
viii. NA

8. What are the value of the inputs if output=1?

i. A=0, B=0
ii. A=0, B=1

iii. A=1, B=0
iv. A=1, B=1
v. I don't know

The following 2 questions are related to the below image:

9. What are the values of the inputs if output=0?

i. A=0, B=0
ii. A=0, B=1

iii. A=1, B=0
iv. A=1, B=1
v. I don't know

10. For the truth table below, what type of logic gate is it?

CHAPTER 2 LOGIC GATES

- 52 –

i. 3 Inputs OR
ii. 3 Inputs AND

iii. 3 Inputs NOR
iv. 3 Inputs NAND
v. Not sure

11. If the two input waveforms A and B are applied to an AND gate, draw a timing diagram
for the resulting output waveform?

12. If the three input waveforms A, B and C are applied to a three input AND gate, draw a
timing diagram for the resulting output waveform?

13. Repeat problems 11 and 12 using OR gates.
14. Repeat problems 11 and 12 using NOR gates.
15. Repeat problems 11 and 12 using NAND gates.
16. Repeat problem 11 using XOR gate.
17. Repeat problem 11 using XNOR gate.
18. Prove that AB = A'B +AB'.
19. Prove that AB = AB +A'B'.
20. . In the comparison of certain logic devices, it is noted that the power dissipation for one

particular type increases as the frequency increases. Is the device TTL or CMOS?

CHAPTER 2 LOGIC GATES

- 53 –

21. Using the table which compares logic families, determine which logic series offers the
best performance considering both switching speed and power dissipation at 100 kHz.
Note: Find the speed-power product of each and compare the results.

22. Sensors are used to monitor the pressure and the temperature of a chemical solution stored
in a vat. The circuitry for each sensor produces a HIGH voltage when a specified
maximum value is exceeded. An alarm requiring a LOW voltage input must be activated
when either the pressure or the temperature is excessive. Design a circuit for this
application?

23. Modify the logic circuit for the intrusion alarm introduced in this chapter so that two
additional rooms, each with two windows and one door, can be protected

CHAPTER3 BOOLEAN ALGEBRA

- 54 –

CHAPTER 3

Boolean Algebra

Describing Logic Circuits Algebraically

Any logic circuit, no matter how complex, may be completely described using the Boolean
operations, because the OR gate, AND gate, and NOT circuit are the basic building blocks of
digital systems.

This is an example of the circuit using Boolean expression:

If an expression contains both AND and OR operations, the AND operations are performed
first (X=AB+C : AB is performed first), unless there are parentheses in the expression, in
which case the operation inside the parentheses is to be performed first (X=(A+B)+C : A+B
is performed first).

Circuits containing Inverters

Whenever an inverter is present in a logic-circuit diagram, its output expression is simply
equal to the input expression with a prime (') over it.

Evaluating Logic Circuit Outputs

Once the Boolean expression for a circuit output has been obtained, the output logic level can
be determined for any set of input levels.

CHAPTER3 BOOLEAN ALGEBRA

- 55 –

This are two examples of the evaluating logic circuit output:

Let A=0, B=1, C=1, D=1

X = A'BC (A+D)'

 = 0'•1•1• (0+1)'

 = 1 •1•1• (1)'

 = 1 •1•1• 0

 = 0

Let A=0, B=0, C=1, D=1, E=1

X = [D+ ((A+B)C)'] • E

 = [1 + ((0+0)1)'] • 1

 = [1 + (0•1)'] • 1

 = [1+ 0'] •1

 = [1+ 1] • 1

 = 1

In general, the following rules must always be followed when evaluating a Boolean
expression:

i. First, perform all inversions of single terms; that is, 0 = 1 or 1 = 0.
ii. Then perform all operations within parentheses.

iii. Perform an AND operation before an OR operation unless parentheses indicate
otherwise.

iv. If an expression has a bar over it, perform the operations of the expression first and
then invert the result.

Determining Output Level from a Diagram

The output logic level for given input levels can also be determined directly from the circuit

diagram without using the Boolean expression.

CHAPTER3 BOOLEAN ALGEBRA

- 56 –

Implementing Circuits From Boolean Expression

If the operation of a circuit is defined by a Boolean expression, a logic-circuit diagram can he
implemented directly from that expression.

Suppose that we wanted to construct a circuit whose output is y = AC+BC' + A'BC. This
Boolean expression contains three terms (AC, BC', A'BC), which are ORed together. This
tells us that a three-input OR gate is required with inputs that are equal to AC, BC', and A'BC,
respectively.

Each OR-gate input is an AND product term, which means that an AND gate with appropriate
inputs can be used to generate each of these terms. Note the use of inverters to produce the A'
and C' terms required in the expression.

Boolean Theorems

Investigating the various Boolean theorems (rules) can help us to simplify logic expressions
and logic circuits.

CHAPTER3 BOOLEAN ALGEBRA

- 57 –

Multivariable Theorems

The theorems presented below involve more than one variable:

(9) x + y = y + x (commutative law)

(10) x • y = y • x (commutative law)

(11) x+ (y+z) = (x+y) +z = x+y+z (associative law)

(12) x (yz) = (xy) z = xyz (associative law)

(13a) x (y+z) = xy + xz (distributive law)

(13b) x + yz = (x + y) (x + z) (distributive law)

(13c) (w+x)(y+z) = wy + xy + wz + xz

(14) x + xy = x [proof see below]

(15) x + x'y = x + y

(16) (x +y)(x + z) = x +yz

(17) x + xy = x (absorption)

Proof of (14)

CHAPTER3 BOOLEAN ALGEBRA

- 58 –

x + xy = x (1+y)

 = x • 1 [using theorem (6)]

 = x [using theorem (2)]

Proof of (15)

x + x’y = (x + x’) (x + y) [theorem 13b]

 = 1 (x +y)

 = (x + y)

Proof of (16)

(x +y)(x + z) =xx + xz + yx + yz

 = x + xz + yx + yz

 = x (1+z+y) +yz

 = x . 1 + yz

 = x + yz

EXAMPLE

The logic circuit shown in Figure is used to turn on a warning bell at X based on the input
conditions at A, B, and C. A simplified equivalent circuit that will perform the same function
can be formed by using Boolean algebra. Write the equation of the circuit in Figure, simplify
the equation, and draw the logic circuit of the simplified equation.

Solution:

The Boolean equation for X is

X = B(A + C) + C = BA + BC + C = BA + C(B + 1) = BA+C.1 = BA + C

X = BA + C

The logic circuit of the simplified equation is shown in Figure.

CHAPTER3 BOOLEAN ALGEBRA

- 59 –

DeMorgan's Theorem

DeMorgan's theorems are extremely useful in simplifying expressions in which a
product or sum of variables is inverted. The two theorems are:

(18) (x+y)' = x' • y'

(19) (x•y)' = x' + y'

Theorem (18) says that when the OR sum of two variables is inverted, this is the same as
inverting each variable individually and then ANDing these inverted variables.

Theorem (19) says that when the AND product of two variables is inverted, this is the same as
inverting each variable individually and then ORing them.

Example

X = [(A'+C) • (B+D')]'

 = (A'+C)' + (B+D')'

 = (AC') + (B'D)

 = AC' + B'D

Three Variables DeMorgan's Theorem

(20) (x+y+z)' = x' • y' • z'

(21) (xyz)' = x' + y' + z'

Implications of DeMorgan's Theorem

(x+y)' = x' • y'

CHAPTER3 BOOLEAN ALGEBRA

- 60 –

(x•y)' = x' + y'

CHAPTER3 BOOLEAN ALGEBRA

- 61 –

EXAMPLE:

Apply DeMorgan’s theorems to each of the following expressions:

(a) D)CBA(

(b) DEFABC

(c) EFDCBA

solution:

(a) D)CBA(= DCBA = DCBA

(b) DEFABC =)FED)(CBA()DEF)(ABC(

(c) EFDCBA =)EF()DC()BA(=)FE)(DC)(BA(

Universality of NAND & NOR Gates

It is possible to implement any logic expression using only NAND gates and no other type
of gate. This is because NAND gates, in the proper combination, can be used to perform each
of the Boolean operations OR, AND, and INVERT.

CHAPTER3 BOOLEAN ALGEBRA

- 62 –

In a similar manner, it can be shown that NOR gates can be arranged to implement any of the
Boolean operations.

Alternate Logic Gate Representations

The left side of the illustration shows the standard symbol for each logic gate, and the right
side shows the alternate symbol. The alternate symbol for each gate is obtained from the
standard symbol by doing the following:

1. Invert each input and output of the standard symbol. This is done by adding bubbles (small
circles) on input and output lines that do not have bubbles, and by removing bubbles that are
already there.

2. Change the operation symbol from AND to OR, or from OR to AND. (In the special case
of the INVERTER, the operation symbol is not changed.)

CHAPTER3 BOOLEAN ALGEBRA

- 63 –

Several points should be stressed regarding the logic symbol equivalences:

1. The equivalences are valid for gates with any number of inputs.

2. None of the standard symbols have bubbles on their inputs, and all the alternate symbols
do.

3. The standard and alternate symbols for each gate represent the same physical circuit: there
is no difference in the circuits represented by the two symbols.

4. NAND and NOR gates are inverting gates, and so both the standard and alternate symbols
for each will have a bubble on either the input or the output. AND and OR gates are
noninverting gates, and so the alternate symbols for each will have bubbles on both inputs and
output.

CHAPTER3 BOOLEAN ALGEBRA

- 64 –

Logic Symbol Interpretation

Concept of Active Logic Levels:

When an input or output line on a logic circuit symbol has no bubble on it, that line is said to
be active-HIGH. When an input or output line does have a bubble on it, that line is said to be
active-LOW. The presence or absence of a bubble, then, determines the active-HIGH/active-
LOW status of a circuit's inputs and output, and is used to interpret the circuit operation.

CANONICAL AND STANDARD FORMS

Minterms and Maxterms

A binary variable may appear either in its normal form (x) or in its complement form (x').
Now consider two binary variables x and y combined with an AND operation. Since each
variable may appear in either form, there are four possible combinations:

x'y’, x'y, xy', and xy. Each of these four AND terms is called a minterm, or a standard product.
In a similar manner, n variables can be combined to form 2n minterms. The 2n different
minterms may be determined by a method similar to the one shown in the following table for
three variables. The binary numbers from 0 to 2n-1 are listed under the n variables. Each min
term is obtained from an AND term of the n variables, with each variable being primed if the
corresponding bit of the binary number is a 0 and unprimed if a 1. A symbol for each minterm

CHAPTER3 BOOLEAN ALGEBRA

- 65 –

is also shown in the table and is of the form mj where j denotes the decimal equivalent of the
binary number of the minterm designated.

In a similar fashion, n variables forming an OR term, with each variable being primed or
unprimed, provide 2n possible combinations, called maxterms, or standard sums. The eight
maxterms for three variables, together with their symbolic designation, are listed in the
following table. Any 2n maxterms for n variables may be determined similarly. Each maxterm
is obtained from an OR term of the n variables, with each variable being unprimed if the
corresponding bit is a 0 and primed if a 1. Note that each maxterm is the complement of its
corresponding minterm, and vice versa.

Minterms and Maxterms for Three Binary Variables

x y z Minterms Maxterms
Term Designation Term Designationnation

0 0 0 x' y’ z' m0 x+y+z M0

0 0 1 x' y' z mi x+y+z’ M1

0 1 0 x' y z’ m2 x+y’+z M2

0 1 1 x' y z m3 x+y’+z’ M3

1 0 0 x y' z’ m4 x'+y+z M4

1 0 1 x y' z m5 x '+y+z’ M5

1 1 0 x y z’ m6 x '+y’+z M6

1 1 1 x y z m7 x '+y’+z’ M7

A Boolean function may be expressed algebraically from a given truth table by forming a
minterm for each combination of the variables that produces a 1 in the function, and then
taking the OR of all those terms. For example, the function f1 in the Table is determined by
expressing the combinations 001, 100, and 111 as x'y'z, xy'z', and xyz, respectively. Since each
one of these minterms results in f1 = 1, we should have

f1 = x'y'z + xy'z' + xyz = m1 + m4 +m7

Similarly, it may be easily verified that

f2 = x'yz + xy'z + xyz1 + xyz = m3 + m5+ m6 + m7

These examples demonstrate an important property of Boolean algebra: Any Boolean function can be
expresses as a sum of minterms (by "sum" is meant the ORing of terms).

CHAPTER3 BOOLEAN ALGEBRA

- 66 –

Functions of Three Variables

x y z f1 f2
0 0 0 0 0
0 0 1 1 0
0 1 0 0 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Now consider the complement of a Boolean function. It may be read from the truth table by
forming a minterm for each combination that produces a 0 in the function and then ORing
those terms. The complement of f1 is read as

f1
’
=x’y’z’ + x’yz’ + x’yz + xy’z + xyz’

If we take the complement of f1
’, we obtain the function f1:

f1 = (x + y + z)(x + y1+ z)(x + y' + z')(x’+ y + z)(x’ + y' + z)

= Mo M2 M3 M5 M6

Similarly, it is possible to read the expression for f2 from the table:

f2 = (x + y + z)(x + y + z')(x + y’ + z)(x' + y + z) = M0M1.M2M4

These examples demonstrate a second important property of Boolean algebra: Any Boolean
function can be expressed as a product of maxterms (by "product" is meant the ANDing of
terms). The procedure for obtaining the product of maxterms directly from the truth table is as
follows. Form a maxterm for each combination of the variables that produces a 0 in the
function, and then form the AND of all those maxterms. Boolean functions expressed as a
sum of minterms or product of maxterms are said to be in canonical form.

Sum of Minterms

Example Express the Boolean function F = A + B'C in a sum of minterms. The function
has three variables. A, B, and C. The first term A is missing two variables; therefore:

A = A (B + B') = AB + AB'

This is still missing one variable:

A = AB(C + C') + AB'(C + C')
= ABC + ABC' + AB'C + AB'C'

The second term B 'C is missing one variable:

CHAPTER3 BOOLEAN ALGEBRA

- 67 –

B'C = B'C(A + A') = AB'C + A'B'C

Combining all terms, we have

 F=A+B'C

= ABC + ABC' + AB'C 4- AB'C' + AB'C + A'B'C

But AB'C appears twice, and according to theorem (x + x == x), it is possible to remove one
of them. Rearranging the minterms in ascending order, we finally obtain

F = A'B'C + AB'C' + AB'C + ABC' + ABC
 = m1 + m4 +m5+ m6 +m7

It is sometimes convenient to express the Boolean function, when in its sum of minterms, in
the following short notation:

F(A,B,C) ==Σ(1,4,5,6,7)

An alternate procedure for deriving the minterms of a Boolean function is to obtain the truth
table of the function directly from the algebraic expression and then read the minterms from
the truth table. Consider the Boolean function:

F = A + B'C

The truth table shown in the following Table can be derived directly from the algebraic
expression.

Truth Table for F = A + B'C

A B C F
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Product of Maxterms

Each of the 22n functions of n binary variables can be also expressed as a product of
maxterms. To express the Boolean function as a product of maxterms, it must first be brought
into a form of OR terms. This may be done by using the distributive law, x + yz = (.x + y)(x +
z). Then any missing variable e.g. x in each OR term is ORed with xx'.

Example: Express the Boolean function F =xy' + yz in a product of maxterm form.

 F = xy' + yz = (xy' + y)(xy' + z) = (x + y)(y' + y)(x + z)(y' + z)

CHAPTER3 BOOLEAN ALGEBRA

- 68 –

 = (x + y)(x + z)(y' + z) = (x + y + zz')(x + yy' + z)(xx' + y' + z)
 = (x + y + z)(x + y + z')(x+y + z)(x + y' + z)(x + y' + z)(x'+y'+z)
 = (x + y + z)(x + y + z') (x + y' + z) (x'+y'+z)
 = M0 M1 M2 M6
 = Π (0,1,2,6)
 We used the distributive law to express in a product of sums.
 We omitted repeated terms.
 We completed each term by ORing the missing variable.
 We can easily use the truth table to reach to a similar result:

x y z xy' yz F
0 0 0 0 0 0 M0
0 0 1 0 0 0 M1
0 1 0 0 0 0 M2
0 1 1 0 1 1
1 0 0 1 0 1
1 0 1 1 0 1
1 1 0 0 0 0 M6
1 1 1 0 1 1

 In the next chapter you will learn how to use Karnaugh map to reach the same result.

STANDARD FORMS

Another way to express Boolean functions is in standard form. In this configuration, the
terms that form the function may contain one, two, or any number of literals. There are two
types of standard forms: the sum of products (SOP) and product of sums (POS).

The sum of products is a Boolean expression containing AND terms, called product terms, of
one or more literals each. The sum denotes the ORing of these terms. An example of a
function expressed in sum of products is F = xy + z +xy'z'. A product of sums is a Boolean
expression containing OR terms, called sum terms. Each term may have any number of
literals. The product denotes the ANDing of these terms. An example of a function expressed
in product of sums is

F = z(x+y)(x+y+z)

A Boolean function may be expressed in a nonstandard form. For example, the function

F = x (xy' + zy)

is neither in sum of products nor in product of sums. It can be changed to a standard form by
using the distributive law to remove the parentheses:

F = xy' + xyz'

CHAPTER3 BOOLEAN ALGEBRA

- 69 –

Questions

Choose the correct answers in the following questions.

1. What function is implemented by the circuit shown

i. x'y'+z ii. (x'+y')z

iii. x'y'z iv. x'+y'+z

v. NA

2. What function is implemented by the circuit shown

i. x+y+z ii. x+y+z'
iii. x'y'z iv. x'+y'+z'
v. NA

3. What function is implemented by the circuit shown

i. xz'+y ii. xz+y
iii. x'z+y' iv. x'y'+y'z'
v. x'y'+y'z

4. Which gate is the following circuit equivalent to?

i. AND ii. OR

CHAPTER3 BOOLEAN ALGEBRA

- 70 –

iii. NAND iv. NOR
v. None of the above

5. Which of the following functions equals the function: f=x+yz' ?

i. x(y'+z) ii. x(y'+z)
iii. (y+x)(z'+x) (y+x')(x'+z') iv. NA

6. Any possible binary logic function can be implemented using only.

i. AND ii. OR
iii. NOT iv. AA (anyone is sufficient)
v. NAND

7. The function in the following circuit is:

i. abcd ii. ab+cd
iii. (a+b)(c+d) iv. a+b+c+d
v. (a'+b')(c'+d')

8. Given F=A'B+(C'+E)(D+F'), use de Morgan's theorem to find F'.

i. ACE'+BCE'+D'F ii. (A+B')(CE'D'F)
iii. A+B+CE'D'F iv. ACE'+AD'F+B'CE'+B'D'F
v. NA

9. The function in the following circuit is:

i. x'+y'+z' ii. x+y+z
iii. x'z'+y'z' iv. xy+z
v. z

10. Try Harder Simplify the following:

i. {[(AB)'C]'D}' ii. (A'+B')C+D'
iii. (A+B')C'+D' iv. A'+(B'+C')D
v. A'+B'+C'+D' vi. A+B+C+D

CHAPTER3 BOOLEAN ALGEBRA

- 71 –

11. Using Boolean algebra, simplify the following expressions as much as possible:

i. (A + B')(A+C) ii. A'B+A'BC'+A'BCD+A'BC'D'E

iii. AB+ CAB +A iv. ABC[AB+ C (BC+AC)]
v. (A'+C)(A'+C')(A+B+C'D)

12. Apply DeMorgan's theorems to each expression:

i.)DC(BA

ii. EF)AB(CD

iii.)DCBA)(DCBA(

iv.)HG)(FE()DC)(BA(

13. Given the following Boolean function:

F = xy'z+x'y'z+w'xy+wx'y+wxy

i. Obtain the truth table of the function.
ii. Draw the logic diagram using the original Boolean expression.

iii. Simplify the function to a minimum number of literals using Boolean algebra.
iv. Obtain the truth table of the function from the simplified expression and show that5 it

is the same as the one in part (i).
v. Draw the logic diagram from the simplified expression and compare the total number

of gates with the diagram of part (ii).

14. Express the following functions in a sum of minterms and a product of maxterms?

i. F(A,B,C,D) = B'D + ACD + BD'
ii. F(A,B,C,D) = (A+B'+C)(BC+D)

iii. F(A,B,C,D) = A'B'C+BD

15. convert the following to the other canonical form.

i. F(A,B,C) = Σ(0,1,5)
ii. FF(A,B,C,D) = Π(1,2,6,7,8,9,13)

CHAPTER 4 KARNAUGH MAP

 -72-

CHAPTER 4

THE KARNAUGH MAP

The Karnaugh map represents a systematic method for simplifying Boolean expressions and
can provide the simplest SOP or POS expression possible. It is similar to a truth table because
it represents all the possible values of inputs and outputs. It is an array of cells in which each
cell represents a binary value of the inputs. The cells are arranged in a matter so that
simplification of a given expression is simply a question of properly grouping adjacent cells.

THE THREE VARIABLE KARNAUGH MAP

The three variable Karnaugh map contains 8 cells. Each one represents a minterm as shown in
figure. The value of a given cell is the value of x at each row combined with the values of yz
at each column. Note that the cells are not arranged in order. They are arranged in a way such
that there is a difference in only one variable between any two adjacent terms. e.g. xyz is
adjacent to x'yz. The map is considered to wrap in both column and row, i.e. the first column
is adjacent to the last one (this applies to rows too in larger maps). The choice of this
arrangement of cells is to ensure efficient simplification using the map as will be clear soon.

THE FOUR VARIABLE KARNAUGH MAP

CHAPTER 4 KARNAUGH MAP

 -73-

The 4-variable map is similar to the 3-variable one, but the number of cell increases to be 16
instead of 8 due to the increase in minterms. The map shown represents the cells of a 4
variable map wxyz where w is the most significant bit and x is the least significant one.

Karnaugh Map Simplification of SOP Expressions

The process that results in an expression containing the fewest possible terms with the fewest possible
variables is called minimization. After an SOP expression has been mapped, there are three steps in
the process of obtaining a minimum SOP expression: grouping the 1s, determining the product term
for each group, and summing the resulting product terms.

Grouping the 1s You can group 1s on the Karnaugh map according to the following rules by
enclosing those adjacent cells containing 1s. The goal is to maximize the size of the groups
and to minimize the number of groups.

1. A group must contain either 1, 2, 4, 8, or 16 cells. In the case of a 3-variable map, eight
cells is the maximum group (16 is max for 8 variables).

2. Each cell in a group must be adjacent to one or more cells in that same group, but all cells
in the group do not have to be adjacent to each other.

3. Always include the largest possible number of 1s in a group in accordance with rule 1.
4. Each 1 on the map must be included in at least one group. The 1s already in a group can be

included in another group as long as the overlapping groups include noncommon 1s.

Determining the Minimum SOP Expression from the Map

The following rules are applied to find the minimum product terms and the minimum SOP
expression:

1. Group the cells that have 1s. Each group of cells containing 1s creates one product term
composed of all variables that occur in only one form (either uncomplemented or
complemented) within the group. Variables that occur both uncomplemented and comp
lemented within the group are eliminated. These are called contradictory variables.

2. Determine the minimum product terms for each group.

(a) For a 3-variable map:

(1) A 1-cell group yields a 3-variable product term
(2) A 2-cell group yields a 2-variable product term
(3) A 4-cell group yields a 1-variable term
(4) An 8-cell group yields a value of 1 for the expression

(b) For a 4-variable map

(1) A 1-cell group yields a 4-variable product term
(2) A 2-cell group yields a 3-variable product term

CHAPTER 4 KARNAUGH MAP

 -74-

(3) A 4-cell group yields a 2-variable product term
(4) An 8-cell group yields a 1-variable term
(5) A 16-cell group yields a value of 1 for the expression

3. When all the minimum product terms are derived from the Karnaugh map, they are
summed to form the minimum SOP expression.

EXAMPLE

Simplify the Boolean expression: F(x,y,z) = Σ (0,1,6,7)
Solution

EXAMPLE:

Simplify the Boolean expression: F(x,y,z) = Σ (0,2,5,7)

SOLUTION

EXAMPLE:

Group the 1's in each of the following Karnaugh maps:

CHAPTER 4 KARNAUGH MAP

 -75-

KARNAUGH MAP PRODUCT OF SUM (POS)
SIMPLIFICATION

The minimized Boolean functions derived from the map in all previous examples were
expressed in the sum of products form. With a minor modification, the product of sums form
can be obtained.

The procedure for obtaining a minimized function in product of sums follows from the basic
properties of Boolean functions. The 1's placed in the squares of the map represent the
minterms of the function. The minterms not included in the function denote the complement
of the function. From this we see that the complement of a function is represented in the map

CHAPTER 4 KARNAUGH MAP

 -76-

by the squares not marked by 1's. If we mark the empty squares by 0's and combine them into
valid adjacent squares, we obtain a simplified expression of the complement of the function,
i.e., of F'. The complement of F' gives us back the function F. Because of Demorgan's
theorem, the function so obtained is automatically in the product of sums form.

EXAMPLE

Simplify the following Boolean function in (a) sum of products and (b) product of sums.

F(w,x,y,z) = Σ (0,1,2,3,10,11,14)

.EXAMPLE

Use a Karnaugh map to minimize the following POS expression.

(x+y+z)(w+x+y'+z) (w'+x+y+z') (w+x'+y+z) (w'+x'+y+z)

solution: The first term must be expanded to get a POS expression:

(w+x+y+z)(w'+x+y+z)(w+x+y'+z)(w'+x+y+z')(w+x'+y+z)(w'+x'+y+z)

=Π(0,8,2,9,4,12)

A zero is placed in the map at the location of each maxterm. The zeroes are grouped to get F'

CHAPTER 4 KARNAUGH MAP

 -77-

DON'T CARE CONDITIONS

Sometimes a situation arises in which some input variable combinations are not allowed. For
example, recall that in the BCD code, there are six invalid combinations: 1010, 1011, 1100,
1101, 1110, and 1111. Since these unallowed states will never occur in an application
involving the BCD code, they can be treated as "don't care" terms with respect to their effect
on the output. That is, for these "don't care" terms either a 1 or a 0 may be assigned to the
output; it really does not matter since they will never occur.

The "don't care" terms can be used to advantage on the Karnaugh map. The following figure
shows that for each "don't care" term, an X is placed in the cell. When grouping the 1's, Xs
can be treated as 1's to make a larger grouping or as 0s if they cannot be used to advantage.
The larger a group, the simpler the resulting term will be. Be careful do not make a group
entirely of x's.

The following truth table describes a logic function that has a 1 output only when the BCD
code for 7, 8, or 9 is present on the inputs. Taking advantage of the "don't cares" and using
them as 1's, the resulting expression for the function is w + xyz, as indicated. If the "don't
cares" are not used as 1s, the resulting expression is w'xyz + wx'y'. So you can see the
advantage of using "don't care" terms to get the simplest expression.

Inputs Output
x y y w Y
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0

CHAPTER 4 KARNAUGH MAP

 -78-

0 1 1 1 1
1 0 0 0 1
1 0 0 1 1
1 0 1 0 X
1 0 1 1 X
1 1 0 0 X
1 1 0 1 X
1 1 1 0 X
1 1 1 1 X

EXAMPLE: Simplify the following Boolean function F, where d represents the set of do
not care conditions.

F(w,x,y,z) = Σ (0,1,2,8,10,11)
d(w,x,y,z) = Σ (4,6,12,13)

CHAPTER 4 KARNAUGH MAP

 -79-

QUESTIONS:

1. Simplify the following Boolean functions using three-variable maps:

(a) F(x.y.z) =Σ (0,1,5,7) (b) F(X,Y,Z) = Σ (1,2,3,4,7)
(c) F(A,B,C) = Σ (3, 5,6,7) (d) F(A,B,C) = Σ (0,2,3,4,6)

2. Simplify the following Boolean expressions using three-variable maps:

 (a) xy + x'y'z' + x'yz' (b} x'y' + yz + x'yz'
(c) A'B + BC' + B'C'

3. Simplify the following Boolean functions using four-variable maps:

(a) F(A, B, C, D) = Σ (4, 6, 7, 15)
(b) F(w, X, y, z) = Σ (2, 3, 12, 13, 14, 15)
(c) F(A, B, C, D) = Σ (3, 7, 11, 13, 14, 15)

4. Simplify the following Boolean functions using four-variable maps:

 (a) F{w, x, y,z) = Σ (1, 4, 5, 6, 12, 14, 15)
(b) F(A, B, C, D) = Σ (0, I, 2, 4, 5, 7. 11. 15)
(c) F(w, x, y, z) = Σ (2, 3, 10, 11, 12, 13, 14, 15)
(d) F(A, B, C, D) = Σ (0, 2. 4, 5, 6, 7, 8, 10, 13, 15)

5. Simplify the following Boolean expressions using four-variable maps:

 (a) w'z + xz + x' y + wx'z
(b) B'D + A'BC' + AB'C + ABC'
(c) AB'C + B'C'D'+ BCD + ACD'+ A'B + A'BC'D
(d) wxy + yz + xy' + x'y

6. Find the minterms of the following Boolean expressions by first plotting .each function in
a map

 (a) xy + yz + xy'z
(b) C'D + ABC'+ ABD'+ A'B'D
(c) wxy + x'z' + w'xz

7. Simplify the following Boolean functions:

 (a) F(w, X, y. z) = Σ (0, 2, 4, 5, 6, 7, 8, 10, 13, 15)
(b) F(A, B, C, D) = Σ (0, 2, 3, 5, 7, 8. 10, 11, 14, 15)
(c)F(A,B,C,D)= Σ (l,3,4,5.10,11,12,13,14,15)

8. Simplify the following Boolean functions using five-variable maps:

(a) F(A, B, C, D, E) = Σ (0, 1, 4, 5, 16, 17. 21, 25, 29)

CHAPTER 4 KARNAUGH MAP

 -80-

(b) F(A, B, C, D, E) = Σ (0. 2, 3, 4, 5, 6, 7, 11, 15. 16, 18, 19, 23, 27, 31)
(c) F = A'B'CE' + A'B'C'D' + B'D'E' + B'CD' + CDE' + BDE''

9. Simplify the following Boolean functions in product of sums:

 (a) F(w, X, y,z) = Σ (0, 2, 5, 6, 7. 8, 10)
(b) F(A, B, C, D) = Σ (l, 3, 5, 7. 13, 15)
(c) F(x,y,z)= Σ (2.3,6,7)
(d) F(A, B, C, D) =Π (0, 1, 2, 3, 4, 10, 11)

10. Use a Karnaugh map to simplify each expression to minimum POS form:
(a) (A+B+C)(A'+B'+C')(A+B'+C)
(b) A(B+C')(A'+C)(A+B'+C)(A'+B+C')
(c) (X+Y')(W+Z')(X'+Y'+Z')(W+X+Y+Z)

CHAPTER 6 FLIP FLOPS

 -81-

CHAPTER 6

Sequential Logic and Flip-Flops

INTRODUCTION

The logic circuits you have previously studied have considered mainly of logic gates

(AND, OR, NAND, NOR, INVERT) and combinational logic.

Starting in this chapter, we will deal with data storage circuits that will latch onto

(remember) a digital state (1 or 0). This new type of digital circuits is called sequential

circuit, because it is controlled by and is used in controlling other circuitry is a certain

sequence according to a control clock.

SEQUENTIAL CIRCUITS AND FEEDBACK:

Figure (1) shows a diagram of a sequential circuit and of a combinational one. It is

obvious that the main difference between both circuits is the feed back path between the

output and the input, present only in the sequential circuit. This beed back path makes the

output of the network depend on both the present input plus the previous input. This gives the

network the chance to have a memory about its previous output. While the output of the

combinational circuit depends only on the combination of inputs.

EXAMPLE 1:

Which of the two circuits in Fig (2) is sequential, and which is combinational? Give
reasons to your answer.

CHAPTER 6 FLIP FLOPS

 -82-

Solution:

The circuit in Fig (a) is combinational and its function is: OUT = A B C. It is obvious that the
output depends only on the combination of inputs and it does not depend on the previous
inputs. The circuit in Fig (b) is sequential and its function is: OUT(t+1) = A B OUT(t) C. It
is obvious that the output depends on both the current inputs and on the previous output. So,
it is a sequential circuit.

SET- RESET (S-R) LATCHES :

Cross- NOR S-R latch (active high)

The Set-Reset (S-R) latch is a data storage device. It can be constructed either by

cross- coupling two NAND gates or two NOR gates. Fig (3) Shows an S-R latch with two

NOR gates.

To analyze this circuit, start with the truth table of the NOR gate.

CHAPTER 6 FLIP FLOPS

 -83-

A B C
0
0
1
1

0
1
0
1

1
0
0
0

 Table[1]

It is obvious that if any of the inputs of the NOR gate is high (logic 1), the output is low

(logic 0). So, we always start the analysis with the logic 1 input.

i. If S = 1, R = 0

 (set condition).

 S = 1 will make the output of the lower NOR gate Q = 0.

 Q is fed back to the upper NOR gate. R = 0 and Q = 0 will make the output of the upper

NOR gate Q = 1.

 Q is also fed back to the lower NOR. S = 1 and Q = 1 will make the output of the lower

NOR stable at 0 (Q = 0). Therefore, the circuit will latch in the set situation.

ii. if S = 0, R = 1 (Reset condition).

 R = 1 will make the output of the upper NOR gate Q = 0.

 Q is fed back to the lower NOR gate. S = 0 and Q = 0 will make the output of the lower

NOR gate Q = 1.

 Q is also fed back to the upper NOR gate. R=1 and Q =1 will make the output of the

upper NOR stable at 0 (Q = 0). Therefore, the circuit will latch in the reset situation.

iii. If S = 0 , R = 0 (No change condition)

CHAPTER 6 FLIP FLOPS

 -84-

 If the circuit is previously set SR = (1,0), and the 1 is removed from the S input; i.e. ; SR

= 00 ; then the circuit should remember that it is set (Q = 1 , Q = 0). (Fig(4.a))

 Q = 1 is fedback to the lower NOR. S = 0 and Q = 1 will make the output of the lower

NOR Q = 0.

 Q = 0 is fedback to the upper NOR gate. R = 0 and Q = 0 will make the output of the

upper NOR gate Q = 1.

 Therefore, the circuit holds at the set position even after removing 1 from S.

 If the circuit is previously reset SR = 01, and the 1 is removed from the R input; i.e. ; SR =

00; then the circuit should remember that it is reset (Q = 0 , Q = 1) as shown in Fig

(4.b).

iv. If S = 1 , R = 1 (Forbidden condition)

* When both S and R inputs are high the output of both NORs will be Zero ; Q = 0, Q =0 as

shown in Fig (5) .

CHAPTER 6 FLIP FLOPS

 -85-

 This condition is forbidden (not allowed or, race) because it makes both outputs equal

which is undesired situation. Another problem encountered when SR = 11, is that if we

return to the no-change condition SR = 00 after the forbidden condition SR = 11 we will

get unpredictable result. This is known as the race situation.

 If we go from SR = 11 to SR = 00, then we may have two cases.

Case 1: R changes first: SR = 10 then SR = 00

Case 2: S changes first: SR = 01 then SR = 00

Case 1 Case 2
 S R Q S R Q

t0 1 0 t0 1 1 0

t1 0 1 t1 0 1 0

t2 0 1 t2 0 0 0

 Table[2]

 Table[3]

 It is obvious that the output of the circuit depends on which input reaches 0 first. That is

why we call it the race condition.

 The function table of the NOR S-R latch is:

R S Q Q Comments

0

0

1

1

0

1

0

1

Q

1

0

0

Q

0

1

0

No change (hold) condition

Set.

reset

Forbidden, Not used , race.

 Table[4]

CHAPTER 6 FLIP FLOPS

 -86-

Cross- NAND S-R latch . (active low).

An S-R latch can be made from cross – NAND gates (Fig. 6). It has similar function to the

NOR latch, but the inputs are active low. It is some times called S - R latch.

The truth table of NAND gate .

A B C
0
0
1
1

0
1
0
1

1
1
1
0

 Table[5]

 The key in analyzing this circuit is that if any of the inputs at the NAND gate is 0, then

the output is 1 regardless of the other input . So, we start the analysis by active low (0)

input.

 The key in analyzing the previous circuit is that if any of the inputs al the NAND gate

is 0, then the output is 1 regardless of the other input . So, we start the analysis by active

low (0) input.

 Analyze the previous circuit in a similar way to the NOR latch, you will reach to the

following . Function table.

Functions table of the NAND latch .

R S Q Q Comments

0 0 1 1 Forbidden, not uset, race
0 1 0 1 Reset
1 0 1 0 Set
1 1 Q Q Nochange (hold) condition

CHAPTER 6 FLIP FLOPS

 -87-

 Table[6]

QUESTION:

If we put an inverter at both S and R inputs as shown in Fig (7), analyze the resulting circuit

and determine its function table.

CHAPTER 6 FLIP FLOPS

 -88-

The symbol used for an S – R latch is shown in Fig (8)

EXAMPLE 2:

What is the function table for the feedback circuit shown in Fig. (9)? Can it work as a flip-flop
or not? Give reasons.

Solution:

1-X = 0, Y = 0 (X is active low. Y is active high)
X = 0 → Q = 1
Q = 1, Y = 0 → P = 0

2-X = 0, Y = 1
X = 0 → Q = 1

CHAPTER 6 FLIP FLOPS

 -89-

Y = 1 → P = 0
3-X = 1, Y = 1

Y = 1 → P = 0
P = 0, X = 1 → Q = 1

4-X = 1, Y = 0
If: Q (t) = 1, Y = 0 → P (t+1) = 0

P (t+1) = 0, X = 1 → Q (t+1) = 1

This circuit can not work as a flip-flop because it has only one stable state (P = 0 and Q = 1).

Its function table Is shown in below:

X Y Q P
0 0 1 0
0 1 1 0
1 0 1 0
1 1 1 0

 Table[7]

EXAMPLE3:

In the previous circuit what will happen if it initially started with Q = 0?

Solution:

The only change will happen in the fourth case (X = 1 and Y = 0) which represents the no-
change condition. If Q (t) = 0 and Y = 0, then P (t+1) = 1. If P (t+1) = 1 and X = 1 then Q
(t+1) = 0. So, the circuit will remain in this state (Q P = 0 1) until any of its inputs (X or Y)
changes then it goes to the state (Q P = 1 0), and remains in this state.

S – R Timing Analysis :

By performing a timing analysis on the S – R flip–flop, we can see why it is called transparent

and also observe the latching phenomenon .

EXAMPLE4:

If the S and R waveforms shown in Fig (10) are applied to the inputs of the NAND latch,
determine the waveform that will be applied on the Q output. Assume that Q is initially low.

CHAPTER 6 FLIP FLOPS

 -90-

Solution: See Fig (10).

R S Q(t+1)
0 0 * forbidden
0 1 0 reset
1 0 1 set
1 1 Q(t) No-change

 Table [8]

The function table of the S-R NOR latch (active low) is shown in the previous table. Initially
Q = 0, and S = R = 1 (no change). At time 1, S changes to 0 and R remains 1. The latch sets
and Q = 1. At time 2 S = 1 and R changes to 0 (reset) and Q changes to 0. At time 3 both S
and R become 1 (no change), and Q is still 1. This applies to all the points as shown in figure
(10).

So the latch sets at points where S changes from 1 to 0 and R = 1. It resets at points where R
changes from 1 to 0 and S = 1. At points where S = R = 1, Q does not change.

EXAMPLE5:

If the S and R waveforms shown in Fig (11.a) are applied to the inputs of the NOR latch,
determine the waveform that will be applied on the Q output. Assume that Q is initially low.

CHAPTER 6 FLIP FLOPS

 -91-

Solution: See Fig (11.b).

The function table of the S-R NOR latch (active high) is shown in Table (2). Initially Q = 0,
and S = R = 0 (no change). At time 1, S changes to 1 and R remains 0. The latch sets and Q =
1. At time 2, S = 0 and R changes to 1 (reset) and Q changes to 0. At time 3, S changes to 1
and R remains 0. The latch sets and Q = 1. This applies to all the points as shown in figure
(11).

So the latch sets at points where S changes from 0 to 1 and R = 0. It resets at points where R
changes from 0 to 1 and S = 0. At points where S = R = 0, Q does not change.

R S Q(t+1)
0 0 Q(t) No-change
0 1 1 set
1 0 0 reset
1 1 * forbidden

 Table[9]

Switch Debouncing Circuits :

 Switch bounce occurs as a mechanical switch lever snaps to a new position. After

reaching the new contact point, the pole bounces on a micrometer scale of millisecond

duration (Fig (12)). Bounce can cause problems in circuits that are expecting an input

to stabilize without oscillating, such as counters.

 As shown in Fig (12), if you flip a mechanical SPDT (single Pole double throw) switch to

a new position, it will bounce a few times before settling. We do not want a counter

circuit, for exople , to count these bounces.

CHAPTER 6 FLIP FLOPS

 -92-

 The S – R debouncer circuit is shown in Fig (13).

 When the switch is neither connected to the lower pin nor to the upper pin, both S and R

equal + 5v (Logic 1) and the latch is in the no change state .

 When the switch has the first contact to the upper pin, S = 0 , R = 1 and the latch is set .

If the switch bounces it will not be connected to either pins and the no change state makes

it stay at the set condition (Q = 1 , Q = 0).

CHAPTER 6 FLIP FLOPS

 -93-

 Similarly, when the switch has the first contact to the lower pin, S = 1 , R = 0 and the

latch is reset (Q = 0 , Q = 1). If the switch bounces, it will not be connected to either

pins and the no change condition makes Q = 0 , Q = 1 as before

CHAPTER 6 FLIP FLOPS

 -94-

Switch Condition R S Q Q
Impossible 0 0 * *
Upper pin contacted 1 0 1 0
Lower pin contacted 0 1 0 1
Neither pin contacted 1 1 No change

Table[10]

EXAMPLE 6:

Show how you can construct a switch debouncing circuit using a NOR lath?

Solution:

As a single pole double throw (SPDT) switch makes a new contact, it bounces a few times
before settling. We do not want a count circuit, for example, to count these bounces. A latch
can be used to eliminate this problem by forcing the lath to be in the no-change condition

CHAPTER 6 FLIP FLOPS

 -95-

when either pin is connected. The function table of the latch, which is shown in fig (14), is
shown in Table [XI].

Switch condition S R Q
Upper pin connected 0 1 0
Lower pin connected 1 0 1
Neither pin
connected

0 0 No-change

Impossible 1 1 *

Table[11]

In the timing diagram in Fig (14-b), at point A the switch is thrown from position 1 to
position 2. The output changes from logic 0 to 1. If the switch bounces around position 2, the
latch will be in the no-change condition and the output stays at logic 1. At point B in the
timing diagram, the switch is thrown from position 2 to position 1. The output changes from
logic 1 to 0. If the switch bounces around position 1, the latch will be in the no-change
condition and the output stays at logic 0. Therefore, the switch is debounced at both
positions.

CHAPTER 6 FLIP FLOPS

 -96-

STATE :

State of a FF or latch is one of two possible stalle conditions for the output. The set state

where Q = 1 , Q = 0 . The reset state where Q = 0 , Q = 1 .

Clocked SR latches (flip – flops) :

Simple gate circuits, combinational logic and transparent S-R flip–flops are called

asynchronous (not synchronous) because the output responds immediately to input changes.

Synchronous circuits operate sequentially , in step , with a control input. To make an S-R flip

flop synchronous, we add a gated input to enable and disable the S and R inputs. Fig (15)

shows a gated S – R flip–flop using a cross NOR S – R latch .

CHAPTER 6 FLIP FLOPS

 -97-

The operation of the circuit is as follows :

 When the gate = 0 , both . Ri = 0 . Therefore the latch is in the no. change (hold)

condition .

 When the gate = 1, Ri = R and Si = S . The latch behaves as a normal S-R latch .

 The latch is only transparent when the gate is active (gate =1) , otherwise it is in the

hold state and the input (S,R) has no effect on it .

 The clocked (gated) latch can also be implemented using cross – NAND gates as

shown in fig (16) .

Try to analyze this circuit yourself. The function table of both circuits is as follows.

Table[12]: Function table of gated flip – flop

S R Gate Q Q Comments

X X 0 Q Q The gate is open and the flip

flop is in the no change.

CHAPTER 6 FLIP FLOPS

 -98-

0 0 1 Q Q
No change

0 1 1 0 1 Reset

1 0 1 1 0 Set

1 1 1 * * forbidden

EXAMPLE 7:

Determine the Q output waveform if the inputs shown in Fig (17-a) are applied to a clocked

(gated) S-R latch that is initially RESET.

Solution: The timing diagram of both inputs and the output are shown in Fig (17). The

latch changes its state only if the clock is high. At points 1 and 3, S = 1, R = 0 and clock = 1,

so the latch sets. At points 2 and 4, S = 0, R = 1 and clock = 1, so the lath resets. At all other

points it does not change its state. The second pulse of S has no effect, because it starts and

ends while the clock is low.

EXAMPLE 8:

Determine the Q output waveform if the inputs shown in Fig (18) are applied to a clocked

(gated) S-R latch that is initially RESET.

CHAPTER 6 FLIP FLOPS

 -99-

GATED D latch :

Another type of flip-flop is the D flip – flop (Data flip – flop) . It can be formed from the

gated S – R latch by the addition of an inverter . This enables just a single input (D) to both

Set and Reset the latch (Fig (19)) .

 When D = 0 , S = 0 and R = 1, the latch is in the reset state and Q = 0 , Q = 1 .

 When D = 1 , S = 1 and R = 0, the latch is in the set state and Q = 1 , Q = 0 .

EXAMPLE 9:

CHAPTER 6 FLIP FLOPS

 -100-

Sketch the output waveform at Q for the inputs at D and G of the gated D latch in Fig (20).

Integrated – circuit D latch (7475) :

The 7475 is an example of an integrated – circuit D. latch (also called a bistable latch) . It

contairs four transparent (not clocked) D latches . Its logic symbol and pin configuration are

shown in figure (21) . Latches 0 and 1 share a common enable (E 0 –1) and latches 2 and 4

share a common enable (E 2 – 3). The enables act just like the G-input in the gated D- latch.

From the function table , we can see that the Q output will follow D (transparent) as long as
the enable line (E) is HIGH (called active – HIGH enable) . When E goes low, the Q output
will become latched to the value that D was just before the HIGH – to – low transition of E .

CHAPTER 6 FLIP FLOPS

 -101-

Function Table For 7475

Operating Mode Inputs Out puts

E D Q (t +1) Q (t +1)

Data Enabled 1 0 0 1

Data Enabled 1 1 1 0

Data Latched 0 X Q(t) Q (t)

 Table[13]

EXAMPLE 10:

Construct a D flip-flop using NOR and AND gates.

Solution:

CHAPTER 6 FLIP FLOPS

 -102-

J–K FLIP – FLOPS :

 The J.K flip – flop (Fig (23 a)) is similar to the S-R flip – flop with Q fed back to be

ANDed with R and Q fed back to be ANDed with S . This forces the Forbidden state

SR = 11 to produce a fourth allowed state called “toggle“.

i. J = 0 , K = 0 (no change)

J = 0 makes S = 0

and K = 0makes R = 0 .

So , this is the no-change (hold) condition

ii. If J = 0 and

K = 1

 (reset)

J = 0 makes

 S = 0

K = 1 makes R = Q(t). Then we may have one of the following two cases:

Case a: if Q(t) = 0 (initially) then

R = 0

 So, SR= 00(no change) and Q(t+1) will stay at 0.

CHAPTER 6 FLIP FLOPS

 -103-

Case b: if Q(t) = 1 (initially) then

R = 1

 So, SR= 01(reset) and Q(t+1) will be reset to Q(t+1) = 0.

So in both cases (a) and (b) , Q will be reset to 0.

CHAPTER 6 FLIP FLOPS

 -104-

iii. If J = 1 and

K = 0

 (set)

CHAPTER 6 FLIP FLOPS

 -105-

J = 1 makes

 S = Q (t)

K = 0 makes

 R = 0. Then we may have one of the following two cases:

Case a: if Q(t) = 0 (initially) then

S = 1

 So, SR= 10 (set) and Q(t+1) will be set to Q(t+1) = 1.

Case b: if Q(t) = 1 (initially) then

S = 0

 So, SR= 00 (reset) and Q(t+1) will remain at 1.

So in both cases (a) and (b) , Q will be set to 1.

v- If

J = 1 and K = 1

 (toggle)

J = 1 makes

 S = Q (t).

K = 1 makesR = Q(t)

Then we may have one of the following two cases:

Case a: if Q(t) = 0 (initially) then

S = 1 and R = 0 (set)

 So, Q(t+1) will be set to 1.

Case b: if Q(t) = 1 (initially) then

 S = 0 and R = 1 (reset) and Q(t+1) will be reset to 0.

So, the next state will be the toggle (complement) of the present state.

 The function table of the J. K flip – flop is

CHAPTER 6 FLIP FLOPS

 -106-

J K Gate Q(t+1) Q (t+1) Comments

X X 0 Q(t) Q (t) No-change (gate is open)

0 0 1 Q(t) Q (t) No-change

0 1 1 0 1 Reset

1 0 1 1 0 Set

1 1 1 Q (t) Q(t) Toggle (complement)

Table[14]

T. (TOGGLE) FLIP–FLOP

 Another type of flip- flop is the T- flip flop. It can be obtained be connecting both J and

K together. As shown in figure (24 .)

The analysis of this circuit is very simple .

i- If T = 0, then JK = 00 and the flip-flop is in the no-change state

ii- If T = 1, then JK = 11 and the flip – flop is in the toggle state.

The function table of the flip-flop is :

T Gate Q(t+1) Q (t+1) Comments

CHAPTER 6 FLIP FLOPS

 -107-

X 0 Q(t) Q (t) No-change (gate is open)

0 1 Q(t) Q (t) No-change

1 1 Q (t) Q(t) Toggle (complement)

Table[15]

MASTER – SLAVE FLIP-FLOPS :

* In the four types of flip-flops (S-R, D, J-K, T) discussed so far the flip-flop is either

transparent i-e not gated; we referred to transparent flip-flops as latches; or the flip–flop is

gated. In gated flip=flops, it is only active when the gate is closed (G = 1). This corresponds

to a circuit that is only active at the HIGH level of the clock .

* In many applications we want the FF to be active at the edge of the clock rather than at the

level. (Fig (25))

The FF active at the clock edge can be achieved by either :

1- edge – triggered FFs

2- Master – slave FFs .

CHAPTER 6 FLIP FLOPS

 -108-

The block diagram of a J-K Master- slave FF is shown in Fig (26).

 The master- slave FF can be constructed from any typr of FF by adding a clocked RS

FF with an inverted clock to form the slave.

 It consists of two FFS; The 1st is called “master“ and is clocked at the HIGH level of

the clock. The 2nd is called “ slave” and is clocked at the low level of the clock .

 The operation of the master-slave flip-flop (Fig (27)) is as follows :

1. While the clock is high , the master is active and the slave is inactive .

2. While the clock is low, the master is inactive and the slave is active.

As a result data are entered into the flip-flop on the leading edge of the clock pulse, but

the output does not reflect the input state until the trailing edge.

CHAPTER 6 FLIP FLOPS

 -109-

 If a J-K FF is sensitive to the level of the clock (Fig 28) , and J K = 11 , the output of

the FF will toggle from 0 – 1 – 0 – 1 until the clock returns to the low level . It is not

exactly known

whether the out put will

be 0 or 1 when the

clock returns to level 0 .

This condition is

known as the race

condition. Using a

master-slave that triggers

on the -ve edge ensures

to eliminate this problem.

EDGE –

TRIGGERED J K FFS :

 With edge triggering, the flip-flop accepts data only on the J and k inputs that are

present at the active clock edge (either +ve (leading) or -ve (trailing) edge). This

gives the engineer the ability to accept input data on J and K at a precise instant in

time. The logic symbols for edge – triggered flip-flop use a small triangle at the clock

input to signify that it is an edge-triggered device (Fig (a,b)).

CHAPTER 6 FLIP FLOPS

 -110-

Symbols for edge triggered J – K flip_flop .

(a) -ve edge triggered

(b) Tve edge triggered

EXAMPLE 11:

- Draw the logic diagram of a master-slave J-K flip-flop using:

 a- NAND gates b- NOR AND gates.

Solution:

Function table:

J K Clock Q(t+1) function
0 0 ↓ Q(t) No-change
0 1 ↓ 0 reset
1 0 ↓ 1 set
1 1 ↓ Q’(t+1) toggle

Table[16]

CHAPTER 6 FLIP FLOPS

 -111-

EXAMPLE 12:

Determine the Q output waveform if the inputs shown in Fig (30) are applied to a clocked S-R

flip flop that is initially RESET. The flip-flop is triggered at the positive edge.

Solution: The clock and the S-R inputs are given and the resulting Q output is shown. We

take a line at each positive edge of the clock and determine the value of S and R. So, Q can

be set, reset or no-change as shown.

Fig (30)

EXAMPLE 13:

- Determine the Q output waveform if the inputs shown in Fig (31) are applied to a clocked S-

R flip-flop that is initially RESET. The flip-flop is triggered at the positive edge.

CHAPTER 6 FLIP FLOPS

 -112-

EXAMPLE 14:

- Determine the Q output waveform if the inputs shown in Fig (32) are applied to a clocked S-

R flip-flop that is initially RESET. The flip-flop is triggered at the positive edge.

EXAMPLE 15:

Draw the logic diagram of a master-slave S-R flip-flop using:

 a- NAND gates b- NOR AND gates.

CHAPTER 6 FLIP FLOPS

 -113-

Solution:

Function table:

S R Clock Q(t+1) function
0 0 ↓ Q(t) No-change
0 1 ↓ 0 reset
1 0 ↓ 1 set
1 1 ↓ * forbidden

 Table[17]

EXAMPLE 16:

Draw the logic diagram of a master-slave T flip-flop using:

a- NAND gates b-NOR AND gates.

Solution:

CHAPTER 6 FLIP FLOPS

 -114-

Fun
ctio
n
tabl
e:

T Clock Q(t+1) function
0 ↓ Q(t) No-change
1 ↓ Q’(t+1) toggle

Table[18]

MASTER-SLAVE FLIP-FLOP AND 1S CATCHING:

 The timing diagram in figure (36) illustrates the 1s catching phenomena in master-

slave SR flip-flops shown on figure (35).

CHAPTER 6 FLIP FLOPS

 -115-

 At time (a), the SET (S) input goes high and returns back to low at (b). This pulse

occurs before the negative edge of the clock and should not affect the output. But, that is

not what really happens because the master output QM will go HIGH at point a (the

master catches this unwanted pulse). At point (b), S returns to LOW (SR = 00), the flip-

flop holds to QM = 1. At the negative edge of the clock, (c), the master output is still

HIGH, which is the input to the slave. So, at point (d) the output of the slave goes HIGH

too.

 Briefly: The master catches the HIGH pulse while the clock is inactive, and fed it to the

slave at the active (-ve) edge of the clock.

 The problem is repeated for the HIGH (level 1) pulse (starting at point e) at the RESET

input. The master catches this reset pulse and causes the slave to RESET at point (f),

even though the reset pulse is not present at point (f).

CHAPTER 6 FLIP FLOPS

 -116-

EXAMPLE 17:

A J-K master – slave level sensitive flip-flop, has the J, K and clock waveforms shown on

fig (37). Draw what you expect the out waveform to look like. The second J pulse is an

example of 1s catching. Why do you think it has that name? What J or K puls would

produce 0s – catching ? The out put was originally low.

CHAPTER 6 FLIP FLOPS

 -117-

Solution :

The timing diagram of both QM & QS are shown on figure(37) . It is obvious that pulse (2) on

the K input is an example of 0s – catching – pulse (3) on the J in put is an example of 1s

catching .

 Analyze he circuit yourself :

DIRECT (ASYNCHRONOUS) INPUTS :

For the clocked flip-flops just discussed, the S-R, D, J-K and T inputs are called synchronous

inputs because data on these inputs are transferred to the flip-flop’s output only on the

triggering edge of the clock pulse; that is, the data are transferred synchronously with the

clock.

Most IC flip-flops also have asynchronous inputs. These are inputs that affect the state of the

flip-flop independent of the clock .

CHAPTER 6 FLIP FLOPS

 -118-

They are normally labeled preset (PRE) and clear (CLR), or direct set (SD) and direct

reset (RD) by some manufactures.

An active level on the preset input will SET the flip-flop, and an active level on the clear

input will RESET it (fig (38)) .

PRE CLR Q

0 0 HI, but unstable

0 1 1

1 0 0

1 1 Clocked operation

Table[19]

 The direct inputs are active low, they must both be kept HIGH for synchronous operation.

 FIG (39) shows the logic diagram for an edge triggered J-K flip-flop with active- low

PRE and CLR inputs.

CHAPTER 6 FLIP FLOPS

 -119-

 This figures illustrates basically how these inputs work. They are connected so that they

override the effect of the synchronous inputs, (J, K) and the clock.

EXAMPLE 18:

 For the +ve edge-triggered J-K flip–flop with preset and clear inputs in figure(40) .

determine the Q output for the inputs shown in the timing diagram (fig(41)) if Q is

initially low.

Solution :

 During pulses 1,2 and 3 , the preset (PRE) is low, keeping the FF SET regardless of the

synchronous J K inputs .

 Starting with the +ve edge of pulse 4 , the FF toggles this continues for pulses 5 and 6.

 During pulse 8, the clear is low, keeping the FF RESET regardless of the synchronous J K

inputs .

CHAPTER 6 FLIP FLOPS

 -120-

Question :If you inter change the PRE and CLR waveforms ; what will the Q output look

like ?

FLIP- FLOP OPERATING CHARACTERISTICS

Propagation Delay times:

 A propagation delay time is the interval of time required after an input signal has been

applied for the resulting output change to occur .

 Several categories of propagation delay are important in the operation of a flip-flop.

1- Propagation delay TPLH as measured from the triggering edge of the clock pulse to the

LOW–to-HIGH transition of the output. This delay is illustrated in figure(42-a).

2- Propagation delay TPHL as measured from the triggering edge of the clock pulse to the

HIGH–to-LOW transition of the output. This delay is illustrated in figure(42-b).

3- Propagation delay TPLH as measured from the preset input to the LOW–to-HIGH

transition of the output. This delay is illustrated in figure (43-a) for an active LOW preset

input.

CHAPTER 6 FLIP FLOPS

 -121-

CHAPTER 6 FLIP FLOPS

 -122-

SET-UP TIME

The set-up time (ts) is the minimum interval required for the logic levels to be maintained

constantly on the inputs (J and K, or S and R, or D) prior to the triggering edge of the clock

pulse in order for the levels to be reliably clocked into the flip-flop. This interval is illustrated

in figure (44) for a D flip-flop.

HOLD TIME

the hold time (th) required for the logic levels to remain on the inputs after the triggering edge

of the clock pulse in order for the levels to be reliably clocked into the flip-flop. This interval

is illustrated in figure (45) for a D flip-flop.

CHAPTER 6 FLIP FLOPS

 -123-

CHAPTER 6 FLIP FLOPS

 -124-

QUESTIONS

1) For the following four problems, feed the specified inputs into the flip-flops, sketch
the output wave at Q and list the flip-flop functions. The flip-flops are level clocked. G:

gate or clock, S and R are the set and reset inputs, D:data input, Cp: clock pulse,
d

S and

d
R are the direct (asynchronous) set and reset respectively.

2)

3)

CHAPTER 6 FLIP FLOPS

 -125-

4)

5) Draw the logic diagram of the gated NOR S-R latch. Explain in details its operation.
Explain the race condition.

6) Draw the logic diagram of the gated NAND S-R latch. Explain in details its operation.
Explain the race condition.

7) Draw the logic diagram of a master-slave J-K flip-flop using AND-NOR gates.
Explain the operation of the master-slave with a timing diagram. Explain the 1's
catching problem.

8) Draw the logic diagram and explain the operation of a master-slave J-K flip-flop using
NAND gates. Explain with a timing diagram how the master-slave is used to solve the
race problem in level clocked J-K flip-flops.

9) Design a switch debouncing circuit using NOR latch. Explain in details the operation
of the circuit.

10) Explain why the S-R latch is called asynchronous and the gated S-R flip-flop is called
synchronous.

11) What procedure would you use to reset the Q output of a gated D flip-flop?
12) For the inputs at D0 and E0-1, in the 7475 D latch, sketch the output waveform at Q0.

CHAPTER 6 FLIP FLOPS

 -126-

13) The Q output of the 7475 D latch follows the level of the D input as long as E is -----
(low or high).

14) The Q output of the 74LS76 shown in figure is used to drive an LED. Sometimes
when the switch is closed the LED toggles to its opposite state but sometimes it does
not. Discuss the problem cause and a solution to the problem.

15) Sketch the Q output in the following master-slave JK flip-flop in relation to the clock.
Q is initially low.

16) Repeat the previous problem for a JK flip-flop that triggers on the positive edge.
17) Typically a manufacturer’s data sheet specifies four different propagation delay times

associated with a flip-flop. Name and describe each one.
18) The datasheet of a certain flip-flop specifies that the minimum HIGH time of the clock

pulse is 30 ns and the minimum LOW time is 37ns. What is the minimum operating
frequency?

CHAPTER 7 SEQUENTIAL CIRCUITS

 -127-

CHAPTER 7

Sequential Circuit Analysis and Design

FLIP-FLOP EXCITATION TABLES :

 When it is required to analyze a sequential circuit, we are given the flip-flop inputs and

asked to give the corresponding output.

 To do that, we must know the characteristic table of the give flip-flop. Table [20] shows

the characteristic table of the four types of flip-flops.

S R Q(t+1) D Q(t+1)

0 0 Q(t) 0 0

0 1 0 1 1

1 0 1

1 1 *

J K Q(t+1) T Q(t+1)

0 0 Q(t) 0 Q(t)

0 1 0 1)t(Q

1 0 1

1 1)t(Q

Table [20] : Characteristic (Function) tables of the four types of flip-flops.

* When it is required to design a sequential circuit the required sequence of input-output of

the circuit is given (present state – next state of output), and it is required to design the input

of the flip-flop (S-R, T , J-K or D) to give the desired output

e.g for an S-R sequential circuit:

design

analysis

(Q(t),Q (t+1)) S-R

CHAPTER 7 SEQUENTIAL CIRCUITS

 -128-

* The excitation table is the reverse of the function (characteristic) table of the flip-flop.

Table [21] shows the excitation table of S-R flip-flop.

Present

state

Next state S R Comments S R Comments

Q(t) Q(t+1)

0 0 0

0

0

1

No change

or reset

0 x R is do not care because both R = 0

and R = 1 give the required Q(t+1)

0 1 1 0 Set 1 0

1 0 0 1 Reset 0 1

1 1 0

1

0

0

No change

or set

x 0 S is do not care because both S =

0 and S = 1 give the required Q(t+1)

Table [21] : excitation table of SR flip – flop

* The excitation tables of all types of flip-flops are shown in table [22]

Present

state

Q(t)

Next state

Q(t+1)

S R Present

state

Q(t)

Next state

Q(t+1)

D

0 0 0 x 0 0 0

0 1 1 0 0 1 1

1 0 0 1 1 0 0

1 1 x 0 1 1 1

Present

state

Q(t)

Next state

Q(t+1)

J K Present

state

Q(t)

Next state

Q(t+1)

T

0 0 0 x 0 0 0

0 1 1 x 0 1 1

1 0 x 1 1 0 1

1 1 X 0 1 1 0

CHAPTER 7 SEQUENTIAL CIRCUITS

 -129-

Table [21] : Excitation table of the 4 – types of flip – flops.

BASIC DEFINITIONS OF SEQUENTIAL CIRCUITS

Sequential circuit :

Any digital circuit with memory due to feedback, particularly a circuit with latches or flip-

flops is a sequential circuit.

State Versus Output:

The state of a sequential circuit is the set of flip-flop output values at a given time. State is

generally not the same thing as the circuit output.

Moore Circuits (Fig (46)) :

 In a Moore circuit, the outputs are function of the present state only, i.e.; function of

flip-flops outputs.

 Some flip-flops outputs may not participate in output at all. Flip-flops that do not

directly influence the output are described as "Hidden". For example: a shift register

where output is taken from the last flip-flop.

CHAPTER 7 SEQUENTIAL CIRCUITS

 -130-

Mealy Circuits:

In a Mealy circuit, the output is a function of both the present state and the external inputs

(Fig (47)).

 In a Moore circuit, the output is synchronized with the clock because it depends only on

the flip-flops outputs.

 In a Mealy circuit, the output may change if the inputs change during the clock – pulse

period.

Counters

 A counter is a sequential circuit that goes through a prespecified sequence of states upon

the application of input pulses.

 An n-bit counter consists of n- flip-flops and can count in binary from 0 to (2n–1).

CHAPTER 7 SEQUENTIAL CIRCUITS

 -131-

State Diagram:

The sequence of states of a sequential circuit, along with the external input and the output of

the circuit, can be represented graphically using a state diagram. Fig (48) shows an example

of a state diagram for a 2-bit counter.

 Each oval shape in the state diagram represents one state of the sequential circuit, e.g. 00,

01, 10, 11.

 The arrow connecting two states is directed from the present state towards the next state.

 The label on the arrow represents the value of the input of the circuit that leads to this

transition.

 So, in fig (48) when the input (x) = 0 , the state of the network counts from

00→01→10→11 and then back to 00.

 If the sequential circuit has an external output; other than the state; it will be labeled on

the state diagram exactly as the input but in the form (x / y) . Where x is the input as

before, and y is the corresponding output. (Fig (50)).

CHAPTER 7 SEQUENTIAL CIRCUITS

 -132-

ANALYSIS OF A SEQUENTIAL CIRCUIT :

EXAMPLE 19:

Given the sequential circuit shown in Fig (49), analyze this circuit to show the sequence of

output the circuit produces.

Solution :

To analyze any sequential circuit, we go through the following sequence of steps.

1) From the logic (or block) diagram of the sequential circuit, get the flip-flops input

functions:

 RA = B x , SA = B x , RB = A x , SB = A x ,

, also get the output function(s) :

 Y = A x

Make the state diagram of the circuit as follows:

P.S. Input FF FF Inputs N.S. O/p

CHAPTER 7 SEQUENTIAL CIRCUITS

 -133-

A B X RA SA RB SB A B Y

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

0

0

1

0

0

0

0

1

0

0

0

1

0

0

0

0

0

1

0

1

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

1

1

0

1

1

1

0

0

0

1

0

1

0

1

0

0

0

0

2. Draw the state diagram for the circuit

EXAMPLE 20:

Study the sequential circuit shown in figure(51), and draw its state diagram.

CHAPTER 7 SEQUENTIAL CIRCUITS

 -134-

 The state of the circuit is QD QC QB QA ,but only QD is output.

 JA = KA = QA (QB + QC) = QA (QB + QC) + Q`A (QB + QC)`

 = QA Q B + QA QC + Q`A Q`B Q`C

JB = QA KB = Q`A

JD = QC

 KD = Q`C

JC = QB KC = Q`B

 State table :

Present state next state Flip-flops inputs

QD QC QB QA QD QC QB QA JD KD JC KC JB KB JA=KA

0 0 0 0 0 0 0 1 0 1 0 1 0 1 1

CHAPTER 7 SEQUENTIAL CIRCUITS

 -135-

0 0 0 1 0 0 1 1 0 1 0 1 1 0 0

0 0 1 0 0 1 0 0 0 1 1 0 0 1 0

0 0 1 1 0 1 1 0 0 1 1 0 1 0 1

0 1 0 0 1 0 0 0 1 0 0 1 0 1 0

0 1 0 1 1 0 1 0 1 0 0 1 1 0 1

0 1 1 0 1 1 0 0 1 0 1 0 0 1 0

0 1 1 1 1 1 1 0 1 0 1 0 1 0 1

1 0 0 0 0 0 0 1 0 1 0 1 0 1 1

1 0 0 1 0 0 1 1 0 1 0 1 1 0 0

1 0 1 0 0 1 0 0 0 1 1 0 0 1 0

1 0 1 1 0 1 1 0 0 1 1 0 1 0 1

1 1 0 0 1 0 0 0 1 0 0 1 0 1 0

1 1 0 1 1 0 1 0 1 0 0 1 1 0 1

1 1 1 0 1 1 0 0 1 0 1 0 0 1 0

1 1 1 1 1 1 0 0 1 0 1 0 1 0 1

 State diagram

 The repeating cycle does not include the reset state 0000.
 The output (QD) is:

QD = 0 000 11 00011 00011 …. With four 0s at the RESET start.

CHAPTER 7 SEQUENTIAL CIRCUITS

 -136-

Analysis of synchronous counters

EXAMPLE 21:

Starting at QC QB QA = 000, what sequence does the synchronous circuit of three D flip-flops

shown in figure(53) step through ?

CHAPTER 7 SEQUENTIAL CIRCUITS

 -137-

FF input (excitation) functions

DA = Q A

DB = QC QA + QB Q A + QB Q C = QA Q C + Q A QC + Q A QB + QB Q C

DC = QB (QA QC) = QA Q C QB + Q A QC QB

State table :

Present state Next state FF inputs

QC QB QA QC QB QA DC DB DA

0
0
0
0
1

0
0
1
1
0

0
1
0
1
0

0
0
0
1
0

0
1
1
1
1

1
0
1
0
1

0
0
0
1
0

0
1
1
1
1

1
0
1
0
1

CHAPTER 7 SEQUENTIAL CIRCUITS

 -138-

1
1
1

0
1
1

1
0
1

0
1
0

0
1
0

0
1
0

0
1
0

0
1
0

0
1
0

The resulting sequence of states is :

QC QB QA Decimal val.

0

0

0

0

1

1

0

0

1

1

1

1

0

1

0

1

0

1

0

1

2

3

6

7

and then it repeats the sequence.

State diagram :

CHAPTER 7 SEQUENTIAL CIRCUITS

 -139-

DESIGN OF SEQUENTIAL CIRCUITS :

EXAMPLE 21:

Design a clocked sequential circuit with the given state diagram. Use JK flip-flops.

1. State diagram :

CHAPTER 7 SEQUENTIAL CIRCUITS

 -140-

2. Excitation table :

Present state Input Next state F.F. inputs

A B X A B JA KA JB KB

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

1

0

1

1

1

0

0

1

0

1

0

1

1

0

0

0

1

0

x

x

x

x

x

x

x

x

0

0

0

1

0

1

x

x

0

1

x

x

x

x

1

0

x

x

0

1

3- Karnaugh map

 X

 1 x x x x 1 x x x x 1

A x x x x 1 1 x x x x 1

 B

JA = B X

KA = B X

JB = X

 KB=XA+ A X

 = A X

4-Logic diagram:

CHAPTER 7 SEQUENTIAL CIRCUITS

 -141-

Design with unused states :

mflip flops

 2m states

As we know that a circuit with m flip-flops can produce up to 2m states. In some

sequential circuits not all these states are used. For example, a counter circuit that goes

through the repeated sequence 0,3,6,9. This circuit is implemented using four flip-flops that

can produce up to sixteen states (0-15). So, the twelve remaining states

(1,2,4,5,7,8,10,11,12,13,14,15) are considered as unused states.

EXAMPLE 22

Design a sequential circuit to satisfy the state diagram shown in figure(57). Use SR flip-

flops. Treat the unused states as do not care conditions.

Solution:

1. state diagram

see fig (57)

CHAPTER 7 SEQUENTIAL CIRCUITS

 -142-

3. Excitation table :

The excitation table of the SR flip-flop is as follows:

Q(t) Q(t+1) S R

0 0 0 x

0 1 1 0

1 0 0 1

1 1 x 0

Use this table and the given state diagram to reach to the following excitation table:

 Present state Input Next state F.F inputs output

 A B C X A B C SA RA SB RB SC RC Y

2

3

4

5

6

0

0

0

0

0

0

0

1

1

1

1

1

0

0

1

0

1

0

1

0

0

0

0

1

0

0

1

1

0

0

1

0

1

0

1

0

0

0

1

0

x

x

x

0

x

0

1

x

0

0

x

0

0

1

1

x

0

1

0

x

0

1

0

x

0

0

0

0

0

0

CHAPTER 7 SEQUENTIAL CIRCUITS

 -143-

7

8

9

10

11

0

1

1

1

1

1

0

0

0

0

1

0

0

1

1

1

0

1

0

1

1

1

1

0

1

0

0

0

0

0

0

1

0

1

0

1

x

x

0

x

0

0

0

1

0

0

0

0

0

0

1

x

x

x

x

0

1

0

x

0

1

0

x

0

1

0

0

1

0

1

4- use the previous table to draw a Karnaugh map for each input of the flip flops taken into

consideration the unused states.

Unused states

A B C X
0
0
1
1
1
1

0
0
1
1
1
1

0
0
0
0
1
1

0
1
0
1
0
1

 X

 x x x x x x x x 1 x x x

 1 1

B

 x x x 1 1 1

A x x x x x x x x x x x x x x x x

 x x x 1 x x x x

 C

SA = B X RA = C X SB = BA X RB=BC+BX

 X

 x x x x x 1 x x

 1 x

B

 x 1

A x x x x x x x x x x x x

 1 x x 1 1 1

 C

CHAPTER 7 SEQUENTIAL CIRCUITS

 -144-

SC = X RC = X Y = A X

5- The resulting logic diagram is shown in figure (58):

Example 23:

 Analyze the sequential circuit obtained and determine the effect of the unused states.

Solution:

 The unused states are : 000 , 110 , 111. We can solve this problem like any analysis

problem.

1- Flip-flops input functions:

SA = B X RA = C X SB = BA X

RB = BC+ BX SC = X RC = X

Y = A X

2- Draw the state table of the unused states:

CHAPTER 7 SEQUENTIAL CIRCUITS

 -145-

State table:

Present state Input Next state Output F.F inputs
A B C X A B C Y SA RA SB RB SC RC
0
0
1
1
1
1

0
0
1
1
1
1

0
0
0
0
1
1

0
1
0
1
0
1

0
0
1
1
0
1

0
1
1
0
0
0

1
0
1
0
1
0

0
0
0
1
0
1

0
0
0
1
0
1

0
0
0
0
1
0

0
1
0
0
0
0

0
0
0
1
1
1

1
0
1
0
1
0

0
1
0
1
0
1

State diagram :

 If the circuit encounters one of the invalid states (000,110, or 111) it goes to one of the

valid ones within one or two clock pulses. For example: if X = 0, the circuit goes

through the states (110,111,001), if X = 1 it goes through the states: (110,100).

 The circuit is self- starting and self-correcting.

CHAPTER 7 SEQUENTIAL CIRCUITS

 -146-

Design of counters :

 A sequential circuit that goes through a pre specified sequence of states upon the
application of input pluses is called a counter.

 An n-bit counter consists of n-flip flops and can count in binary from 0 to 2n –1.

EXAMPLE 24:

Design a counter with the following binary sequence and repeat (0,1,2,3,4,5). Use

J K flip flops.

Excitation table :

Count sequence Flip – Flop inputs
A B C JA KA JB KB JC KC
0
0
0
1
1
1

0
0
1
0
0
1

0
1
0
0
1
0

0
0
1
x
x
x

X
X
x
0
0
1

0
1
x
0
1
x

x
x
1
x
x
1

1
x
0
1
x
0

x
1
x
x
1
x

JA=B KA = B

JB = C JC = B

CHAPTER 7 SEQUENTIAL CIRCUITS

 -147-

Effect of the two unused states :

State table

Present state Next state F.F inputs
A B C A B C JA KA JB KB JC KC
0
1

1
1

1
1

1
0

0
0

0
0

1
1

1
1

1
1

1
1

0
0

1
1

State diagram of the counter

The counter is sell correcting & self starting. Why?

EXAMPLE 25:

Design a two-bit count down counter. This is a sequential circuit with two flip flops and one
input x. When x = 0 , the state of the flip-flops doesn’t change. When x = 1 the state sequence
is 11, 10, 01 , 00 , 11 and so on .

1- State diagram :

CHAPTER 7 SEQUENTIAL CIRCUITS

 -148-

2- Excitation table :

Present state Input Next state Flip flop inputs
A B X A B JA KA JB KB
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
0
0
1
0
1
1

0
1
1
0
0
1
1
0

0
1
0
0
x
x
x
x

x
x
x
x
0
1
0
0

0
1
x
x
0
1
x
x

x
x
0
1
x
x
0
1

3- Map Simplification :

The excitation table of the JK flip-flop is:

Q(t) Q(t+1) J K

0 0 0 x
0 1 1 x
1 0 x 1
1 1 X 0

 X

 1 x x x x 1 x x x x 1

CHAPTER 7 SEQUENTIAL CIRCUITS

 -149-

A x x x x 1 1 x x x x 1

 B

JA = X B KA = X B JB = X KB = X

EXAMPLE 26:

Design a synchronous counter for the repeating sequence :0 3 6 9 12 0 Use D flip flops .
Consider the next state for all unused states as zero (0000).

Solution:

State Diagram :

Excitation table :

Present state Next state FFs inputs
 A B C D A B C D DA DB DC DD
0
3
6
9
12

0
0
0
1
1

0
0
1
0
1

0
1
1
0
0

0
1
0
1
0

0
0
1
1
0

0
1
0
1
0

1
1
0
0
0

1
0
1
0
0

0
0
1
1
0

0
1
0
1
0

1
1
0
0
0

1
0
1
0
0

Key

DA = A`BCD` + AB`C`D

DB = ABCD` + AB`C`D

CHAPTER 7 SEQUENTIAL CIRCUITS

 -150-

Logic circuit:

The logic circuit of the counter is shown in figure(63). Not all the inputs of the flip-
flops are labeled. The others should be connected and labeled according to the previous
equations.

CHAPTER 7 SEQUENTIAL CIRCUITS

 -151-

EXAMPLE 27:

Redesign the counter described in example (26), but consider that the unused states are don’t
care conditions.

Analysis of unused states :

state table

 Present State Next State
 A B C D A B C D
1
2
4
5
7
8
10
11
13
14
15

0
0
0
0
0
1
1
1
1
1
1

0
0
1
1
1
0
0
0
1
1
1

0
1
0
0
1
0
1
1
0
1
1

1
0
0
1
1
0
0
1
1
0
1

0
0
0
0
1
0
0
1
1
1
1

1
0
1
1
1
0
0
1
1
0
1

1
0
1
1
1
0
0
0
0
0
0

1
0
0
1
1
0
0
0
0
1
1

CHAPTER 7 SEQUENTIAL CIRCUITS

 -152-

State Diagram :

1- All the unused states lead to one of the used states. So, the counter is self starting and
self correcting .

EXAMPLE 28:

Repeat the previous example using J K flip-flops.

 * Count sequence : 0 3 6 9 12 0

Q(t) Q(t+1) J K

0 0 0 x

0 1 1 x

1 0 x 1

CHAPTER 7 SEQUENTIAL CIRCUITS

 -153-

1 1 x 0

Excitation Table :

 Present state Next state FFs inputs
 A B C D A B C D JA KA JB KB JC KC JD KD
0
3
6
9
12

0
0
0
1
1

0
0
1
0
1

0
1
1
0
0

0
1
0
1
0

0
0
1
1
0

0
1
0
1
0

1
1
0
0
0

1
0
1
0
0

0
0
1
x
x

x
x
x
0
1

0
1
x
1
x

x
x
1
x
1

1
x
x
0
0

x
0
1
x
x

1
x
1
x
0

x
1
x
1
x

Analysis of the unused states :

JA = KA = B , JB = D , KB = 1

JC = A` , KC = B , JD =A`, KD = 1

State table :

 Present state Next State
 A B C D A B C D J

A
K
A

J
B

K
B

J
C

K
C

J
D

K
D

CHAPTER 7 SEQUENTIAL CIRCUITS

 -154-

1
2
4
5
7
8
10
11
13
14
15

0
0
0
0
0
1
1
1
1
1
1

0
0
1
1
1
0
0
0
1
1
1

0
1
0
0
1
0
1
1
0
1
1

1
0
0
1
1
0
0
1
1
0
1

0
0
1
1
1
1
1
1
0
0
0

1
0
0
0
0
1
1
1
0
0
0

1
1
1
1
0
0
1
1
0
0
0

0
1
1
0
0
0
0
0
0
0
0

0
0
1
1
1
0
0
0
1
1
1

0
0
1
1
1
0
0
0
1
1
1

1
0
0
1
1
0
0
1
1
0
1

1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
0
0
0
0
0
0

0
0
1
1
1
0
0
0
1
1
1

1
1
1
1
1
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1
1

State Diagram :

 All the unused states lead to one of the used states

EXAMPLE 29:

 A sequential circuit with two D flip-flops, A and B, two inputs x and y; and one output z is
specified by the following next-state and output equations:

A(t+1) = x’y +xA

B(t+1) = x’B + xA

CHAPTER 7 SEQUENTIAL CIRCUITS

 -155-

Z = B

a) Draw the logic diagram of the circuit.

b) Derive the state table.
c) Derive the state diagram.

Solution:

1-Flip-Flops equations:

DA = x’y + xA

DB = x’B + xA

2- Output equation: z = B

3- State table:

Present state Input Next state Output
A B x y A B Z
0 0 0 0 0 0 0
0 0 0 1 1 0 0
0 0 1 0 0 0 0

CHAPTER 7 SEQUENTIAL CIRCUITS

 -156-

0 0 1 1 0 0 0
0 1 0 0 0 1 1
0 1 0 1 1 1 1
0 1 1 0 0 0 0
0 1 1 1 0 0 0
1 0 0 0 0 0 0
1 0 0 1 1 0 0
1 0 1 0 1 1 1
1 0 1 1 1 1 1
1 1 0 0 0 1 1
1 1 0 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 1 1 1

3-State diagram

EXAMPLE 30:

Derive the state table and the state diagram of the sequential circuit shown in figure. Explain

the function that the circuit performs.

Solution:

CHAPTER 7 SEQUENTIAL CIRCUITS

 -157-

Flip-flops equations:

 TA = A + B
 TB = A’ + B

State table:

Present state Next state F.F inputs
A B A B TA TB
0 0 0 1 0 1
0 1 1 0 1 1
1 0 0 0 1 0
1 1 0 0 1 1

State diagram:

0 0 1 1

1 00 1

CHAPTER 7 SEQUENTIAL CIRCUITS

 -158-

The circuit counts through the repeated sequence:

 00 , 01 , 10

EXAMPLE 31:

Analyze the circuit shown in figure and prove that it is equivalent to a T flip-flop.

Solution:

D = Q T

Present state Input Next state
Q(t) T Q(t+1) D = Q

T
0 0 0 0
0 1 1 1
1 0 1 1
1 1 0 0

We notice that, when T = 0, Q(t+1) = Q(t)

 When T =1, Q(t+1) = Q’(t)

Therefore, it is equivalent to a T flip-flop.

CHAPTER 7 SEQUENTIAL CIRCUITS

 -159-

EXAMPLE 32:

Design a synchronous counter that counts through the hexadecimal sequence 2, 4, 8, A, C and
then repeats. Use D flip-flops. Treat the unused states as don’t care conditions.

Solution:

Excitation Table:

Present state Next state Flip Flops inputs
A B C D A B C D DA DB DC DD
0 0 1 0 0 1 0 0 0 1 0 0
0 1 0 0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 1 0 1 0
1 0 1 0 1 1 0 0 1 1 0 0
1 1 0 0 0 0 1 0 0 0 1 0

x x x 2
4 x x x
C x x x
8 x x A

Key

x x x
1 x x x
 x x x
1 x x 1

DA = A’B + AB’ = A B

x x x 1
 x x X
 x x X
 x x 1

DB = C

X x x
 x x x
1 x x x
1 x x

DC = AC’

CHAPTER 7 SEQUENTIAL CIRCUITS

 -160-

From the table DD = 0

 Draw the circuit yourself with four D flip flops using the functions concluded
before.

EXAMPLE 33:

Analyze the unused states in the previous circuit to check if it is self-starting or not.

Solution:

DA = A’B + AB’ = A B
DB = C
DC = AC’
DD = 0

State table for the unused states:

A(t+1) = DA

B(t) = DBC(t+1) = DC

 D(t+1) = DD

State Table

Present
state

Next state After
correction

A B C D A B C D A
0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1
0 0 1 0 0 1 0 0 0
0 0 1 1 0 1 0 0 0
0 1 0 0 1 0 0 0 1
0 1 0 1 1 0 0 0 1
0 1 1 0 1 1 0 0 0
0 1 1 1 1 1 0 0 0
1 0 0 0 1 0 1 0 1
1 0 0 1 1 0 1 0 1
1 0 1 0 1 1 0 0 1
1 0 1 1 1 1 0 0 1
1 1 0 0 0 0 1 0 0
1 1 0 1 0 0 1 0 0
1 1 1 0 0 1 0 0 0
1 1 1 1 0 1 0 0 0

CHAPTER 7 SEQUENTIAL CIRCUITS

 -161-

 The counter is not self-starting because state 0000 leads to state 0. Also state 0001
leads to state 0000.

 This problem can be fixed by taking:

DA = AB’ + A’C’

The value of A after the correction is show in the last column of the table. It is obvious that all
the unused states lead to some used and the counter is now self-correcting.

EXAMPLE 34:

Convert a D flip-flop to a JK flip-flop by including input gates to the D flip-flop. The gates
needed for the input of the D flip-flop can be determined by means of sequential circuit
design procedures.

Solution:

The sequential circuit will have one D flip-flop and two inputs, J and K. It is required to get
D as function of J and K so that the D flip-flop acts as a J K flip-flop.

Excitation table:

Present
state

Inputs Next state F F input

A(t) J K A(t+1) D
0 0 0 0 0
0 0 1 0 0
0 1 0 1 1
0 1 1 1 1
1 0 0 1 1
1 0 1 0 0
1 1 0 1 1
1 1 1 0 0

 1 1
1 1

D = A’J + AK’

CHAPTER 7 SEQUENTIAL CIRCUITS

 -162-

3

 The next state is first determined according to the value of J and K; e.g. if JK= 00 it is a
no-change condition, and so on.

 The D input is determined from the next state where: D = A(t+1)
 D is simplified by a Karnaugh map.
 The resulting circuit is as drawn in figure.

EXAMPLE 35:

 Design a sequential circuit with two JK flip-flops, A and B, and two inputs, E and x. If E =
0, the circuit remains in the same state regardless of the value of x. When E = 1 and x = 1, the
circuit goes through the state transitions from 00, 01, 10, 11 and then repeats. When E = 1
and x = 0, the , circuit goes through the state transitions from 11, 10, 01, 00 and then repeats.

Solution:

Function table of the required counter

E x Function
0 0 No-change
0 1 No-change
1 0 2-bit up-counter
1 1 2-bit down counter

Flip-flop excitation table

Q(t) Q(t+1) J K
0 0 0 X
0 1 1 X
1 0 x 1

CHAPTER 7 SEQUENTIAL CIRCUITS

 -163-

1 1 x 0

Function table:

Inputs Present state Next state Flip flop inputs
E x A B A B JA KA JB KB
0 0 0 0 0 0 0 X 0 X
0 0 0 1 0 1 0 X X 0
0 0 1 0 1 0 X 0 0 X
0 0 1 1 1 1 X 0 X 0
0 1 0 0 0 0 0 X 0 X
0 1 0 1 0 1 0 X X 0
0 1 1 0 1 0 X 0 0 X
0 1 1 1 1 1 X 0 X 0
1 0 0 0 0 1 0 X 1 X
1 0 0 1 1 0 1 X X 1
1 0 1 0 1 1 X 0 1 X
1 0 1 1 0 0 X 1 X 1
1 1 0 0 1 1 1 X 1 X
1 1 0 1 0 0 0 X X 1
1 1 1 0 0 1 X 1 1 X
1 1 1 1 1 0 X 0 X 1

 X X
 X X
1 X X
 1 X X

JA = E B x’ + E B’x

Similarly: KA = E B x’ + E B’x JB = E

 KB = E

 Draw the circuit with two JK flip-flops with the functions concluded above.

EXAMPLE 36:

Design a counter that goes through the sequence 0,1,3,5,7 and repeats. Use T flip-flops.
Treat the unused states as do not care conditions. Analyze the final circuit to ensure that it is
self correcting. If your design produces a on self-correcting counter, you must modify the
circuit to make it self correcting.

CHAPTER 7 SEQUENTIAL CIRCUITS

 -164-

Solution:

Count sequence
 flip flops inputs
A B C

 TA TB TC
0 0 0

 0 0 1
0 0 1

 0 1 0
0 1 1

 1 1 0
1 0 1

 0 1 0
1 1 1

 1 1 1

 1 X
X 1 X

TA = B

 1 1 X
X 1 1 X

TB= C

1 X
X 1 X

TC = A B + C’

 Draw the circuit composed of three T flip-flops with the functions concluded.
 Analysis of the unused states:

P.S. FF inputs N.S.

CHAPTER 7 SEQUENTIAL CIRCUITS

 -165-

A B C TA TB TC A B C
0 1 0 1 0 1 1 1 1
1 0 0 0 0 1 1 0 1
1 1 0 1 0 1 0 1 1

Each of the unused states lead to one of the used states. Therefore, the counter is self
correcting.

Draw the state diagram your self to assure this.

CHAPTER 7 SEQUENTIAL CIRCUITS

 -166-

QUESTIONS

1) Design a counter circuit that goes through the repeated sequence 0,2,4,6 use J-K flip-
flops.

2) Starting at QC QB QA = 000, what sequence does the synchronous circuit of three D
flip-flops step through ? Where DC = QA QB

DB = QB QC
 DA = QB + QC

3) When a student tries to design a counter that goes through the hexadecimal sequence
2,4,8,A,C he reaches to the following design:

DA = A B DB = C

 DC = AC'

 DD =0

Draw the logic diagram of the circuit. Is this circuit self-correcting or not?

4) A sequential circuit with two T flip-flops A and B one input x, is specified by the
following equations:

TA = A' B + x'B TB = A B

 Draw the logic diagram of the circuit and derive its state diagram.

5) Design a sequential circuit that goes through the sequence 1,3,5,7. use D flip-flops.
Treat the next state for all the unused states as do not care.

6) Design a MOD-6 synchronous counter that counts in the sequence
10,11,12,13,14,15,10,11,12,… and so on. Use T flip-flops. Treat the next state for all
unused states as do not care. Analyze the resulting circuit to ensure that it is self-
correcting.

7) Design a MOD-4 UP/DOWN binary counter that has a control input x. If x=0 it
counts from 0 to 3 and if x=1 it counts from 3 to 0. Use S-R flip-flops.

8) A sequential circuit has two flip-flops, A,B; one input x and one output y. The state
diagram is shown in figure. Design the circuit using J-K flip-flops. Is it a Moore or a
Mealy circuit? Give reason.

CHAPTER 7 SEQUENTIAL CIRCUITS

 -167-

9) A sequential circuit has three flip-flops, A,B,C; one input x and one output y. The state
diagram is shown in figure. The circuit is to be designed by treating the unused states
as do not care conditions. The final circuit must be analyzed to ensure that it is self-

correcting. Use D flip-flops.
10) Determine the sequence of states produced by the following circuit.

CHAPTER 7 SEQUENTIAL CIRCUITS

 -168-

11) Determine the sequence of states of the following counter. The counter is initially
cleared.

12) Design a sequential circuit to produce the following binary sequence and repeats. Use
JK flip-flops. 1,4,3,5,6,2,1,….

13) Design a counter to produce the following binary sequence. 0,9,1,78,2,7,3,6,4,5,0

1- Use JK flip flops.

 2- Use D flip-flops.

3- Use RS flip-flops.

 4- Use T flip-flops.

In each case analyze the resulting circuit to ensure that the counter is self starting and
self correcting. You may treat the next state for the unused states as a don’t care
condition.

14) Design a binary counter with the sequence shown in the state diagram.

CHAPTER 7 SEQUENTIAL CIRCUITS

 -169-

CHAPTER 8 COUNTER CIRCUITS

-170-

CHAPTER 8

Counter Circuits

CLASSIFICATION OF COUNTERS

Counters

 Asynchronous (ripple)

 Synchronous

They use the O/P of one FF clock inputs on each FF

to generate the clock

 are connected together

transition on another FF(s)

Counters

Binary Decimal Octal special
0,1,2, ….,2n –1

i- 0,1,2,3 22 states

ii- 0,1,…,15 24 states

0,1,2, …, 10n - 1

i- 0,1, …. 9 10 states

ii- 0,1, …99 100 states

 Any specified
sequence sf
states

CHAPTER 8 COUNTER CIRCUITS

-171-

Counters

 up

 down

 up/down

RIPPLE COUNTERS (ASYNCHRONOUS COUNTERS):

 In the counter circuits designed in part II, input pulses (clock) are simultaneously
applied to all clock inputs of all flip-flops. So, all the flip-flops are synchronous,
meaning that they are all triggered at exactly the same time.

 In ripple (or asynchronous) counters: The clock pulse inputs of all flip-flops (except

the first one) are triggered not by the input pulses but by the output of other flip-flops.

3-bit Asynchronous Binary counter : (Mod-8)

To form a 3-bit ripple binary counter, we cascade three J-K flip-flops, each operating in the
toggle mode as shown in figure (71).

 The clock input used to increment the binary count comes into the C p input of the
first flip-flop.

 Each flip-flop will toggle every time its clock input receives a HIGH – to – Low

edge

CHAPTER 8 COUNTER CIRCUITS

-172-

Count sequence
Q2 Q1 Q0
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Timing diagram:

 Each negative edge causes the next flip-flop to toggle.

 Q0 toggles at each negative edge of the clock input.

 Q1 toggles at each negative edge of Q0

CHAPTER 8 COUNTER CIRCUITS

-173-

 Q2 toggles at each negative edge of Q1

 The result is that the outputs will count repeatedly from 000 up to 111 as shown in

the timing diagram.

 The term ripple is derived from the fact that the input clock trigger is not

connected to each flip-flop directly but instead has to propagate down through

each flip-flop to reach the next.

 If we have a 4 – bit binary counters, we would count from 0000 up to 1111, which

are 16 different binary outputs.

 We can determine the number of states (modulus) of a binary counter by using the

following formula:

Modulus = 2 N where

 N = number of flip – flips on the condition that there are not any unused states.

Synchronous versus ripple counters:

 [1] If we look at a given clock pulse, e.g. pulse 7, the negative

edge C p causes Q0 to toggle low which causes Q1 to toggle low which causes Q2 to

toggle low. There will be a propagation delay between the time that C p goes low

until Q2 finally goes low. Because of this delay, ripple counters are called

asynchronous counters, meaning that each flip-flop is not triggered at exactly the

same time. The propagation delay – places limitations on the maximum frequency

allowed by the clock.

 [2] Synchronous counters can be formed by driving each flip-flop’s clock by the same

clock input. Synchronous counters are more complicated than ripples counters.

DOWN COUNTERS:

CHAPTER 8 COUNTER CIRCUITS

-174-

 To form a down – counter, simply take the binary outputs from the Q outputs instead

of the Q outputs, as shown in figure (73). The down counter waveforms are shown in

the timing diagram in figure (74).

Timing diagram:

 When we compare the waveforms of the up counter and the down counter, we can see

that they are exact complements of each other. So, the binary output is taken from Q

instead of Q.

CHAPTER 8 COUNTER CIRCUITS

-175-

 We can alternatively get count-down counter by connecting Q of each stage to the

negative edge triggered clock pulse of the next stage and get the output from Q output

of the flip-flops.

DESIGN OF DIVIDE – BY – N COUNTERS:

 Counter circuits are also used as frequency dividers to reduce the frequency of
periodic waveforms.

 If we study the waveforms generated by the MOD-8 (3-bit) counter discussed before,

we notice that the frequency of the 22 output line is one-eighth the frequency of the

input clock. So, a MOD-8 counter can be used as a divide – by – 8 – frequency divider

and a MOD – 16 can be used as a divide – by – 16 – frequency divider. The duty

cycle of each of the out puts in figure (72) and (74) is 50%

 To design a divide – by – 5 (MOD –5) counter, we can modify the MOD –8 counter

so that when it reaches the number 5 (101) all flip – flops will be reset.

 The new count sequence will be 0 – 1 – 2 – 3 - 4 –and so on. To get the counter to

reset at number 5 (binary 101), you will have to monitor 20 and 22 lines and, when

they are both HIGH, put out a low reset pulse to all flip flops. Figure (75) shows a

circuit that can work as a MOD-5 ripple binary counter.

 The inputs to the NAND gate are connected to the 20 and 22 lines, so when the number

5 (101) comes up the NAND puts out a low level to Reset all flip – flops.

 As we can see from the timing diagram in figure (76), the number 5 will appear at the

outputs for a short duration, just long enough to Reset the flip-flops. The resulting

short pulse on the 20 line is called a glitch. If t PHL of the NAND gate equals 15 ns and

it also takes 30ns (t PHL) for the low on R D to Reset the Q output to low. There fore,

the total length of the glitch equals 45ns. If the input clock period is in the

microsecond range, then 45ns is insignificant, but at extremely high clock frequencies,

the glitch could give us erroneous results. Also notice that the duty cycle of each of

the outputs is not 50% anymore.

CHAPTER 8 COUNTER CIRCUITS

-176-

 Any modulus counter (divide – by – N counter) can be formed by using external
gating to Reset at a predetermined number.

BCD RIPPLE (DECADE) COUNTER

Counter with ten states in their sequence (modulus –10) are called decade counters. A
decade counter with a count sequence of zero (0000) through nine (1001) is a BCD decade
counter because its ten state sequence is the BCD code. This type of counter is useful in
display applications in which BCD is required for conversion to decimal output.

CHAPTER 8 COUNTER CIRCUITS

-177-

Fig (77) shows a decade asynchronous counter. To obtain the count sequence (0…..9) and
back to 0, it is necessary to force the counter to recycle back to the 0000 state after the 1001
state. One way to make the counter recycle after the count nine is to decode count ten (1010)

with a NAND gate and connect the output of the NAND gate to the clear (CLR) inputs at the
flip flops as shown in figure (77). When the counter goes into count ten (1010), both 21 and 23
go HIGH at the same time and the output at the NAND gate goes low to reset all flip-flops.

 Figure (78) shows how to connect three counters to form a 3-decade decimal BCD

counter that counts from 0 to 999.

EXAMPLE 37:

Draw the logic diagram of a 4-bit binary ripple up-counter using flip-flops that trigger on the
positive edge transition.

CHAPTER 8 COUNTER CIRCUITS

-178-

Solution:

To design this counter start with the count sequence 0000- 1111 (like the one used in case of
–ve edge transition you studied). You can notice that:

A1: complements at each count pulse.

A2: Complements with each –ve edge of A1.

A3: Complements with each –ve edge transition of A2.

A4: Complements with each –ve edge transition of A3.

EXAMPLE 38:

Draw the logic diagram of a 4-bit binary ripple down counter using the following:

a) Flip-flops that trigger on the positive edge transition.

b) Flip-flops that trigger on the negative edge transition.

Solution:

Start with the count sequence 1111-0000 (do it yourself), you will find that:

A1: complements at each count pulse.

A2: Complements with each +ve edge of A1.

A3: Complements with each +ve edge transition of A2.

A4: Complements with each +ve edge transition of A3.

For positive edge triggered flip-flop, draw it similar to the previous problem.

CHAPTER 8 COUNTER CIRCUITS

-179-

For negative edge triggered flip-flop, draw it similar to the previous problem.

SYNCHRONOUS COUNTERS:

Synchronous counters eliminate the propagation delay time of the clock encountered in ripple

counters because all the clock inputs are tied to a common clock input line, so each flip-flop

will be triggered at the same time (thus any Q output transitions will occur at the same time).

If we want to design a 4-bit synchronous binary up counter with T flip-flops, the following

steps are done:

Excitation table:

Count sequence Flip-flops inputs

A3 A2 A1 A0 TA3 TA2 TA1 TA0

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

1

0

1

1

1

CHAPTER 8 COUNTER CIRCUITS

-180-

0

0

0

0

0

1

1

.

.

1

0

1

1

1

1

0

0

.

.

1

1

0

0

1

1

0

0

.

.

1

1

0

1

0

1

0

1

.

.

1

0

0

0

0

1

0

0

.

.

1

1

0

0

0

1

0

0

.

.

1

1

0

1

0

1

0

1

.

.

1

1

1

1

1

1

1

1

.

.

1

 We can conclude from the excitation table (using a Karnauph map or by inspection that

TA0 = 1 TA1 = A0

TA2 = A0 A1

 TA3 = A0 A1 A2

The 4 – bit synchronous counter is shown in figure (82).

 The synchronous counter can be implemented using J-K flip-flops operated in toggle

mode by joining J and K together as shown in figure (83).

CHAPTER 8 COUNTER CIRCUITS

-181-

 We notice that the first flip-flop toggles with each clock-pulse, the second flip-flop

toggles when the output of the first flip-flop is HIGH, the third flip-flop toggles when the

outputs of the first and the second flip- flops are both HIGH. This logic holds for all the

stages and can be used to extend the counter to any number of n-bits.

SYNCHRONOUS BINARY DOWN-COUNTER:

A binary down- counter can be implemented in a similar way to the up counter. The only

change is that the Q outputs are used as inputs to the T (or J–K) input of the next flip-flop.

The 4-bit synchronous binary down counter is shown in figure (84).

UP/DOWN SYNCHRONOUS COUNTERS:

An up/down counter is one that is capable of progressing in either direction through a certain

sequence. An up/down counter, sometimes called a bi-directional counter, can have any

specified sequence of states. A 3-bit binary counter that advances upward through the

CHAPTER 8 COUNTER CIRCUITS

-182-

sequence (0,1,2,3,4,5,6,7) and then can be reversed so that it goes through the sequence in the

opposite direction (7,6,5,4,3,2,1,0) is shown in figure (85).

 If the UP/ DOWN input is HIGH, the upper AND gates are active and the circuit

works as an up–counter.

 If the UP/ DOWN input is LOW, the lower AND gates are active and the circuit

works as a down counter.

CHAPTER 8 COUNTER CIRCUITS

-183-

QUESTIONS

1) Design and sketch a MOD-12 ripple up counter that can be manually RESET by an
external push button. Explain the circuit operation in details.

2) Design a divide-by-14 ripple counter that can be manually RESET by an external push
button. Sketch the timing diagram at the output of each stage and calculate the duty
cycle at the final stage. Explain the circuit operation in details and the reason of the
glitch at the final stage.

3) The waveforms shown are applied to the inputs at A,
d

R and Cp. Sketch the resultant

waveforms at D, Q, Q and x.

4) What is the modulus of a counter whose output counts from:

a) 0 to 7
b) 5 to 0
c) 2 to 15
 d) 7 to 3

5) How many J-K flip-flops are required to construct the following counters:

a) Mod 7
b) Mod 20
c) Mod 33
 d) Mod 2

6) If the input frequency to a 6-bit counter is 10 MHz, what is the frequency at the
following input terminals:

20, 21, 22, 23, 24, 25

7) Draw the timing waveform at
p

C , 20, 21, 22 for a 3-bit binary up-counter for 10 clock

pulses.
8) Repeat the previous problem for a binary down counter.
9) How many flip-flops are required to form the following divide-by-N frequency

dividers?

CHAPTER 8 COUNTER CIRCUITS

-184-

a) divide-by-12
 b) divide-by-18.

10) Explain why the propagation delay of a flip-flop affects the maximum frequency at
which a ripple counter can operate.

11) Design a circuit that will convert a 2-MHz input frequency into a 0.4 MHz output
frequency.

12) Design and sketch a MOD-5 ripple down-counter with a manual reset push button.
The count sequence are 7,6,5,4,3,7,6,5,…. And so on.

13) What advantages a synchronous counter have over a ripple-counter?

14) Sketch the waveform at
p

C , 20, 21, 22 for 10 clock pulses in the counter shown in

figure.

15) In the previous problem, find the duty cycle fort the 22 output wave.

CHAPTER 9 REGISTERS

-185-

CHAPTER 9

REGISTERS

REGISTER WITH PARALLEL LOAD :

A register is a group of binary storage cells suitable for holding binary information. A

group of flip-flops constitutes a register. some registers have additional gates that can affect

the circuit operation.

A group of flip-flops sensitive to pulse duration is called a latch whereas, a group of

flip- flops sensitive to pulse transition is called a register.

The function table of the register is :

Load Clock Clear Function

0

1

x

x

↓

x

1

1

0

No change

Load

clear

 When the clear is LOW, all the flip-flops outputs (A0 - A3) are cleared regardless of the

value of the load input or the parallel inputs (I0 - I3).

CHAPTER 9 REGISTERS

-186-

 When the load input is LOW , the J and K inputs of all flip-flops are LOW. So, the

register is in the HOLD or no-change state.

 When the load input is HIGH, J = I and K= I for all flip-flops. For example if I0 = 1, J0 =

1 and K0 = 0 . So, the flip-flop is in the set condition and A0 = 1. Similarly if I0 = 0, J0 = 0

and K0 = 1. So, the flip-flop is in the reset condition and A0 = 0. We notice that in both

cases A0 = I0. This holds for all the flip-flops outputs (A0 - A3) and the inputs (I0 - I3) are

parallely loaded in the register .

 The storage capacity of a register is the number of bits (1s and 0s) of digital data it can

retain. Each flip-flop in a register represents one bit of storage capacity.

CHAPTER 9 REGISTERS

-187-

SHIFT REGISTER BASICS:

A register is a digital circuit with two basic functions :

Data storage and data movement. The storage capability of a register makes it an important

type of memory device. The shifting capability of a register permits the movement of data

from stage to stage within the register or into or out of the register upon application of clock

pulses. The following figure illustrates the types of data movement in shift registers. The

block represents any arbitrary 4-bit register, and the arrows indicate the direction of data

movement.

CHAPTER 9 REGISTERS

-188-

SERIAL IN/SERIAL OUT SHIFT REGISTERS:

The serial in / serial out shift register accepts data serially, i.e. one bit at a time on a

single line . It produces the stored information on its output also in serial form. Figure(87)

shows a 4-bit serial in / serial out shift register using D flip-flops.

The output of each FF is connected as an input to the next flip-flop . So, the data are

shifted to the right from one flip-flop to another. Suppose that the register initially contains

(0111) and the data 1011 are serially (bit by bit) loaded to the D input of the left flip- flop .

The contents of the register and the serial output after each clock pulse are shown in the

following table:

Clock

pulse

Serial I/P

Bit

State of register

(parallel outputs)

Serial 0/P bit

Initial

1

2

3

4

1

1

0

1

x

0

1

1

0

1

1

0

1

1

0

1

1

0

1

1

1

1

1

0

1

1

1

1

0

1

CHAPTER 9 REGISTERS

-189-

 To take serial data out of FF0, the data enters the D input of FF3 and are shifted to the

right one bit with each clock pulse. After four clock pulses the data appear at Q0 and can

be obtained serially one bit for each clock pulse .

 The previous register can also be operated as a serial in/parallel out shift register. In this

case, data can be obtained from the Q output of the four flip-flops at the same time. But,

we should note that to load a register with four consecutive bits, we should wait for four

clock pulses.

 It is obvious from the previous discussion that the shift register is simpler to implement

but it is slower in operation.

 The previous register is a shift right register. We can implement a shift left register in a

similar way but connecting the output of a flip-flop to the input of the flip-flop to the left,

the serial input is connected to FF0 and the serial out put is taken from FF3.

A block diagram for an 8-bit serial in/serial out shift- register is shown in figure(88).

A block diagram for a 4-bit serial in/ parallel out shift register is shown in figure(89).

CHAPTER 9 REGISTERS

-190-

PARALLEL IN/SERIAL OUT SHIFT REGISTERS

For a register with parallel data inputs, the bits are entered simultaneously into their respective
stages on parallel line rather than on a bit–by–bit basis on one line as with serial data inputs.
The serial output is the same as described before, once the data are completely stored in the
register.

The data storage elements can be D flip–flops, R-S flip-flops or J-K flip-flops. In the next
circuit we will use a J-K flip-flop. Most J-Ks are negative edge triggered and will have an

active-low asynchronous Set (S D) and Reset (R D). Figure (90) shows the circuit connections
for a 4-bit parallel-in, serial out shift register that is first reset and then parallel loaded with an
active-LOW 7 (1000), and then shifted right four positions.

All clock inputs are fed from a common clock input. Each flip-flop will respond to its J-K
inputs at every negative clock input edge. Because every J-K input is connected to the
preceding stage output, then at each negative clock edge each flip-flop will change to the
state of the flip-flop to its left. In other words, all data bits will be shifted one position to

the right .

Initially, RESET goes low, resulting Q0 to Q3 to Zero. Next , the parallel data are input (

parallel loaded) via the D0 to D3 input lines. Because the SET inputs are active LOW, the

complement of the number to be loaded must be used . The SET inputs must be returned
HIGH before shifting can be initiated.

At the first negative clock edge,

 Q0

 takes on the value of Q1

CHAPTER 9 REGISTERS

-191-

 Q1

 takes on the value of Q2

 Q2

 takes on the value of Q3

 Q3

 is Reset by J = 0, K = 1

In effect, the bits have all shifted one position to the right. The following negative edges of

clock periods 2,3 and 4 will each shift the bits one more position to the right.

The serial output data come out of the right – end flip-flop (Q0). As the LSB was parallel
loaded into the right most flip–flop, the LSB will be shifted out first. The order of the parallel
input data bits could have been reversed and the MSB would have come out first. Either case
is acceptable. It is up to the designer to know which is first, MSB or LSB, and when to read
the serial output data line.

Figure (91) shows how shift registers are commonly used in data communications systems.
Computers operate on data internally in a parallel format. To communicate over a serial cable
or a telephone line, the data must first be converted to the serial format. For example, for
computer A to send data to computer B, computer A will parallel load 8 bits of data into shift
register A and then apply eight clock pulses. The 8 data bits output from shift register A will
travel across the serial communication line to shift register B, which is concurrently loading
the 8 bits. After shift register B has received all 8 data bits, it will output them on its parallel
output lines to computer B. This is a simplification of the digital communication that takes
place between computers, but it illustrates the heart of the system, the shift register.

CHAPTER 9 REGISTERS

-192-

Figure (92) illustrates another way to implement a 4-bit parallel in/serial out shift register.

Notice that there are four data-input lines, D0, D1, D2 and D3, and a SHIFT/ LOAD input,
which allows four bits of data to be loaded in parallel into the register. When

SHIFT/ LOAD is Low, the AND gates to the right in each pair of gates are enabled (the gates
connected to the inverters) allowing each data bit to be applied to the D input of its
corresponding flip-flop. When a clock pulse is applied, the flip-flops with D=1 will SET and
those with D = 0 will RESET, thereby storing all four bits simultaneously.

When SHIFT/ LOAD is HIGH, the AND gates to the left in each pair of gates are enabled (

gates connected directly to SHIFT/ LOAD input) allowing the data bits to shift right from
one stage to the next. The OR gates allow either the normal shifting operation or the parallel
data- entry operation, depending on which AND gates are enabled by the level on the

SHIFT/ LOAD input. Note that each OR gate and the 2-AND gates connected to it act as a 2
X 1 multiplexer. So, if we want the register to perform n-operations we could use an Nx1
multiplexer.

BIDIRECTIONAL SHIFT REGISTER:

A bi-directional shift register is one in which the data can be shifted either left or right. It can
be implemented by using gating logic or interchangeably a multiplexer that enables the
transfer of data in parallel or from one stage to the next stage either to the right or to the left
according to the control signals.

Figure (93) shows a 4-bit bi-directional shift register with parallel load. It consists of four D
flip-flops and four multiplexers. The four multiplexers have two common selection variables
S1 and S0. When S1S0 = 00 , input 0 is selected by the multiplexer and the present value of the
register is applied to the D inputs of the flip–flops. The next clock pulse transfers into each

CHAPTER 9 REGISTERS

-193-

flip-flop the binary value it held previously, and no change of state occurs. When S1S0 = 01,
terminals 1 of the multiplexer inputs have a path to the D inputs of the flip-flops. This causes
a shift-right operation, with the serial input transferred into flip-flop A3. When S1S0 = 10, a
shift-left operation results, with the serial input transferred into flip-flop A0. Finally, when
S1S0 = 11, the binary information on the parallel input lines is transferred into the register
simultaneously during the next clock pulse.

The function table of the register is :

S1 S0 Operation
0

0

1

1

0

1

0

1

No change.

Shift right.

Shift left.

Parallel load.

CHAPTER 9 REGISTERS

-194-

EXAMPLE 39

The contents of a 4-bit register are initially 1101. The register is shifted six times to the right
with the serial input being 101101. What is the content of the register after each shift?

Solution:

 Serial
input

Register contents

Initially 1 1 1 0 1
After T1 0 1 1 1 0
After T2 1 0 1 1 1
After T3 1 1 0 1 1
After T4 0 1 1 0 1
After T5 1 0 1 1 0
After T6 1 0 1 1

EXAMPLE 40

 Design a shift register with parallel load that operates according to the following table:

Shift Load Operation
0 0 No change
0 1 Parallel load
1 X Shift right

Solution:

CHAPTER 9 REGISTERS

-195-

RING SHIFT COUNTER AND JOHNSON SHIFT COUNTER:

Two common circuits that are used to create sequential control waveforms for digital systems
are the ring and Johnson shift counters. They are similar to a synchronous counter because
the clock input to each flip-flop is driven by the same clock pulse. Their outputs do not count
in true binary, but instead provide a repetitive sequence of digital output levels. These shift
counters are used to control a sequence of events in a digital system (digital sequences).

CHAPTER 9 REGISTERS

-196-

In the case of a 4-bit ring shift counter, the output at each flip-flop will be HIGH for one clock
period, then LOW for the next three, and then repeat as shown in figure (96). To form the

ring shift counter of figure (95), the Q- Q output of each stage is fed to the J-K input of the
first stage. Before applying clock pulses, the shift counter is preset with a 1-0-0-0.

Ring shift counter operation

The RC circuit connected to the power supply will provide a LOW then HIGH as soon as the
power is turned on, forcing a HIGH-LOW-LOW-LOW AT Q0-Q1-Q2-Q3, which is the
necessary preset condition for a ring shift counter. At the first negative clock input edge, Q0
will go LOW because just before the clock edge J0 was low (from Q3) and K0 was HIGH

CHAPTER 9 REGISTERS

-197-

(from Q0). At the same clock edge, Q1 will be HIGH because its J-K inputs are connected to

Q0 - Q0 , which were 1-0. The Q2 and Q3 flip-flops will remain Reset (LOW) because their J-
K inputs see a 0-1 from the previous flip-flops.

Now, the ring shift counter is outputting a 0-1-0-0 (period 2). At the negative edge of period
2, the flip-flop outputs will respond to whatever levels are present at their J-K inputs, the
same as explained in the preceding paragraph. That is, because J2-K2 are looking back at

(connected to) Q1- Q1 (1-0), then Q2 will go HIGH. All other flip-flops are looking back at a
0-1, so they will Reset (LOW). This cycle repeats continuously. The system acts like it is
continuously “pushing” the initial HIGH level at Q0 through the four flip-flops.

The Johnson shift counter circuit is similar to the ring shift counter except that the output lines
of the last flip-flop are crossed (thus an alternative name is twisted ring counter) before
feeding back to the input of the first flip-flop and all flip-flops are initially RESET as shown
in figure (97).

Johnson shift counter operation

The RC circuit provides an automatic RESET to all four flip-flops, so the initial outputs will
all be RESET (LOW). At the first negative clock input edge, the first flip-flop will set HIGH

because J0 is connected to Q3 (HIGH) and K0 is connected to Q3 (LOW). The Q1,Q2 and Q3
outputs will follow the state of their preceding flip-flops because of their direct connection J
to Q. Therefore, during period 2, the output is 1-0-0-0.

At the next negative edge, Q0 remains HIGH because it takes on the opposite state of Q3, Q1
goes HIGH because it takes on the same state as Q0, Q2 stays LOW, and Q3 stays LOW. Now
the output is 1-1-0-0.

The sequence continues as shown in figure (98). Notice that, during period 5, Q3 gets Set
HIGH. At the end of period 5, Q0 gets Reset LOW because the outputs of Q3 are crossed, so
Q0 takes the opposite state of Q3.

CHAPTER 9 REGISTERS

-198-

