CHAPTER 14
NUMBER SYSTEMS AND CODES 4
DIGITAL SYSTEM 4
INTRODUCTION 4
BINARY NUMBERS 4
Binary to Decimal Conversion 5
Decimal to Binary Conversion 5
Range of binary numbers: 6
Binary Arithmetic 6
OCTAL NUMBERS 9
Octal Conversions 10
HEXADECIMAL NUMBERS 11
Hexadecimal Conversion 12
1's and 2's COMPLEMENTS 13
REPRESENTATION OF SIGNED NUMBERS 14
Sign-Magnitude 14
l's Complement 15
2's Complement 16
2's Complement Evaluation: 18
ARITHMETIC OPERATIONS WITH SIGNED NUMBERS 19
Addition 19
Subtraction 21
BINARY CODED DECIMAL (BCD) 23
THE ASCII CODE 24
EXTENDED ASCII CHARACTERS 25
The Excess-3 Code 26
Self-Complementing Property 27
ERROR-DETECTION CODE 28
QUESTIONS 29
CHAPTER 2 32
LOGIC GATES 32
Boolean Variables \& Truth Tables 32
OR Operation 33
Timing Diagrams of OR gates 34
An application: Alarm System 34
AND Operation 35
Timing Diagrams of AND gates 36
An application: A Seat Belt Alarm System 36
NOT Operation 37
NOR Operation 38
Negative AND equivalent of a NOR gate 38
An application: An aircraft landing indicator 39
NAND Operation 40
Negative OR Equivalent Operation of the NAND Gate 41
An application: A Manufacturing Plant Tank Indicator 41
THE EXCLUSIVE-OR AND EXCLUSIVE-NOR GATES 42
The Exclusive- OR Gate 42
The Exclusive-NOR Gate 42
Timing diagram 43
INTEGRATED CIRCUIT LOGIC FAMILIES 43
Diode Logic (DL) 43
Resistor-Transistor Logic (RTL) 44
Diode-Transistor Logic (DTL) 45
Transistor-Transistor Logic (TTL) 45
Emitter-Coupled Logic (ECL) 46
CMOS Logic 47
Fan-in 49
Fan-out 49
Comparison of performance characteristics of CMOS, TTL and ECL logic gates. 49
QUESTIONS 49
CHAPTER 3 54
BOOLEAN ALGEBRA 54
DESCRIBING LOGIC CIRCUITS ALGEBRAICALLY 54
Evaluating Logic Circuit Outputs 54
Implementing Circuits From Boolean Expression 56
Boolean Theorems 56
DeMorgan's Theorem 59
Universality of NAND \& NOR Gates 61
Alternate Logic Gate Representations 62
LOGIC SYMBOL INTERPRETATION 64
CANONICAL AND STANDARD FORMS 64
Minterms and Maxterms 64
Sum of Minterms 66
Product of Maxterms 67
STANDARD FORMS 68
Questions 69
CHAPTER 4 72
THE KARNAUGH MAP 72
THE THREE VARIABLE KARNAUGH MAP 72
THE FOUR VARIABLE KARNAUGH MAP 72
Karnaugh Map Simplification of SOP Expressions 73
Determining the Minimum SOP Expression from the Map 73
KARNAUGH MAP PRODUCT OF SUM (POS) SIMPLIFICATION 75
DON'T CARE CONDITIONS 77
QUESTIONS: 79
CHAPTER 681
SEQUENTIAL LOGIC AND FLIP-FLOPS 81
INTRODUCTION81
SEQUENTIAL CIRCUITS AND FEEDBACK: 81
Cross- NOR S-R latch (active high) 82
Cross- NAND S-R latch . (active low). 86
$S-R$ Timing Analysis : 89
Switch Debouncing Circuits : 91
STATE: 96
Clocked SR latches (FLIP - FLOPS) : 96
GATED D LATCH: 99
Integrated - circuit D latch (7475) : 100
J-K FLIP - FLOPS : 102
T. (TOGGLE) FLIP-FLOP 106
MASTER - SLAVE FLIP-FLOPS : 107
EDGE - TRIGGERED J K FFS : 109
MASTER-SLAVE FLIP-FLOP AND 1S CATCHING: 114
DIRECT (ASYNCHRONOUS) INPUTS : 117
FLIP- FLOP OPERATING CHARACTERISTICS 120
Propagation Delay times: 120
SET-UP TIME 122
HOLD TIME 122
QUESTIONS 124
CHAPTER 7 127
SEQUENTIAL CIRCUIT ANALYSIS AND DESIGN127
FLIP-FLOP EXCITATION TABLES : 127
BASIC DEFINITIONS OF SEQUENTIAL CIRCUITS 129
Sequential circuit: 129
State Versus Output: 129
Moore Circuits (Fig (46)) : 129
Mealy Circuits: 130
Counters 130
State Diagram: 131
ANALYSIS OF A SEQUENTIAL CIRCUIT : 132
Analysis of synchronous counters 136
DESIGN OF SEQUENTIAL CIRCUITS : 139
Design with unused states : 141
Design of counters : 146
QUESTIONS 166
CHAPTER 8170COUNTER CIRCUITS170
CLASSIFICATION OF COUNTERS 170
RIPPLE COUNTERS (ASYNCHRONOUS COUNTERS): 171
3-bit Asynchronous Binary counter : (Mod-8) 171
COUNT SEQUENCE 172
DOWN COUNTERS: 173
DESIGN OF DIVIDE - BY - N COUNTERS: 175
BCD RIPPLE (DECADE) COUNTER 176
SYNCHRONOUS COUNTERS: 179
SYNCHRONOUS BINARY DOWN-COUNTER: 181
UP/DOWN SYNCHRONOUS COUNTERS: 181
QUESTIONS 183
CHAPTER 9 185
REGISTERS 185
REGISTER WITH PARALLEL LOAD : 185
SHIFT REGISTER BASICS: 187
SERIAL IN/SERIAL OUT SHIFT REGISTERS: 188
PARALLEL IN/SERIAL OUT SHIFT REGISTERS 190
BIDIRECTIONAL SHIFT REGISTER: 192
RING SHIFT COUNTER AND JOHNSON SHIFT COUNTER: 195
Ring shift counter operation 196
Johnson shift counter operation 197

CHAPTER 1

NUMBER SYSTEMS AND CODES

DIGITAL SYSTEM

INTRODUCTION

You have previously studied how to represent a number in decimal, binary, octal and hexadecimal numbering systems and also how to make a conversion from one representation to the other ones. In the following sections, we will make a quick overview of these skills. Then, we will illustrate how to represent negative numbers in binary and how to make arithmetic operations on them. After that a group of the most used codes and their common uses are given. Finally, two famous and simple error correction and detection codes are given.

BINARY NUMBERS

In the well known decimal numbering system, each position can represent 10 different digits from 0 to 9 . each position has a weighting factor of powers of 10 .

Example:

To Evaluate (5621) ${ }_{10}$ each digit is multiplied by the weight of its position which is a power of 10 .
$5621=1 \times 10^{0}+2 \times 10^{1}+6 \times 10^{2}+5 \times 10^{3}$

A similar approach is followed in the other numbering systems with a variation in the base ($10,2,8,16$). In binary numbers, we can only use the digits 0 and 1 and the weights are powers of 2 .

Table[I]

2^{10}	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
1024	512	256	128	64	32	16	8	4	2	1

Binary to Decimal Conversion

To convert a binary number into decimal, we multiply each bit (binary digit) by the weight of its position and sum up the results.

Example:

Convert the binary number $(11011011)_{2}$ to decimal.

Answer:

$(11011011)_{2}=1 \times 2^{0}+1 \times 2^{1}+1 \times 2^{3}+1 \times 2^{4}+1 \times 2^{6}+1 \times 2^{7}=1+2+8+16+64+128=219$

Decimal to Binary Conversion

There are two ways to make this conversion; the repeated division-by-2method (which you have studied before) and the sum of weights method (which will be illustrated now).

Sum of weights method:

To find a binary number that is equivalent to a decimal number, we can determine the set of binary weights whose sum is equal to the decimal number. We can use table[I] to determine the highest weight that is less than the number and put 1 in its position then subtracting it from the number and repeating the same process until finding all the 1 s in the number then filling the positions in between with 0 s.

Example:

Convert the following decimal numbers to binary form: 13, 100, 65, and 189. Put your answer as eight bit numbers.

Answer:

	128	64	32	16	8	4	2	1
$13=$	0	0	0	0	1	1	0	1
$100=$	0	1	1	0	0	1	0	0
$65=$	0	1	0	0	0	0	0	1
$189=$	1	0	1	1	1	1	0	1

Range of binary numbers:

We have used eight bit numbers for illustration because the 8 -bit grouping is standard in most computers and has been given the special name byte. Using eight bits, 256 different numbers can be represented. Combining two bytes to get sixteen bits, 65,536 different numbers can be represented. Combining four bytes to get 32 bits, 4.295×10^{9} different numbers can be represented, and so on. The formula for finding the number of different combinations of n bits is

Total combinations $=2^{\mathrm{n}}$ different numbers in the range 0 to $\left(2^{\mathrm{n}}-1\right)$
For example a 4 -bit number can hold up to $2^{4}=16$ different values in the range 0 to 15 (0 to 1111). An 8 -bit number can hold up to $2^{8}=256$ different values in the range 0 to 255 (0 to 11111111).

Example:

What is the range of values (in decimal) that can be represented by a binary number of the following number of bits: 10,20 and 24 .

Solution:

$\mathrm{N}=10$
range $=0$ to $2^{10}-1=0$ to 1023
i.e. $1024(1 \mathrm{~K})$ numbers
$\mathrm{N}=20$

$$
\text { range }=0 \text { to } 220-1=0 \text { to } 1048575
$$

i.e. $1048576(1 \mathrm{M})$ numbers
$\mathrm{N}=24$
range $=0$ to $224-1=0$ to 16777215
i.e. $16777216(16 \mathrm{M})$ numbers

Binary Arithmetic

Binary Addition

The four cases for adding binary digits $(\mathrm{A}+\mathrm{B})$ are as follows:

A	B	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Where: S is the sum and C is the carry.

Example:

Add the following binary numbers and put the result in 8-bits. Verify your answer by converting into decimal: a) $00111111+01111100$
b) $11101101+01000011$

Answer:

a) $00111111+01111100=10111011$
$(63+124=187)$
b) $11101101+01000011=100110000 \quad$ This example shows that the result could not fit in 8 -bits $(237+67=304)$ and the maximum capacity of 8 -bits is 255 . That is what we call overflow.

$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$			
0	0	1	1	1	1	1	1
0	1	1	1	1	1	0	0
1	0	1	1	1	0	1	1

	$\mathbf{1}$			$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	
	1	1	1	0	1	1	0	1
	0	1	0	0	0	0	1	1
	0	0	0	1	1	0	0	0

Binary Subtraction

The four cases for subtracting binary digits ($\mathrm{A}-\mathrm{B}$) are as follows:

A	B	D	B
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Where: D is the difference and B is the borrow.

Example:

Subtract the following binary numbers and put the result in 8 -bits. Verify your answer by converting into decimal: a) 10111111-01111100
b) 11101101-01000011

Answer:

a) $10111111-01111100=01000011$
$(191-124=67)$
b) $11101101-01000011=10101010$
$(237-67=170)$

$\mathbf{0}$	$\mathbf{1 0}$						
1	0	1	1	1	1	1	1
0	1	1	1	1	1	0	0
0	1	0	0	0	0	1	1

					$\mathbf{0}$	$\mathbf{1 0}$	
1	1	1	0	1	4	θ	1
0	1	0	0	0	0	1	1
1	0	1	0	1	0	1	0

Binary Multiplication

The four cases for multiplying binary digits (A x B) are as follows:

A	B	P
0	0	0
0	1	0
1	0	0
1	1	1

Where: P is the product.

Example:

Multiply the following binary numbers and put the result in 8-bits. Verify your answer by converting into decimal: a) 11100×101
b) 11011×1101

Answer:

a) $11100 \times 101=10001100$

$$
(16+8+4) \times(4+1)=(128+8+4) \quad 28 \times 5=140
$$

b) $\quad 11011 \times 1101=101011111$
$(16+8+2+1) \times(8+4+1)=(256+64+16+8+4+2+1)$
$27 \times 13=351$
This case indicates a condition of overflow, where the resulting number (351) could not fit in 8 -bits and we need an extra bit to represent it correctly.

Binary Division

Division in binary numbers is similar to long division in decimal.

Example:

Divide the following binary numbers and put the result in 8-bits. Verify your answer by converting into decimal: $11001 \div 101$

Answer:

a)

$$
\begin{array}{ll}
(16+8+1) \div(4+1)=(4+1) & 11001 \div 101=101 \\
25 \div 5=5 &
\end{array}
$$

OCTAL NUMBERS

The eight allowable digits are $0,1,2,3,4,5,6$ and 7 and the weights are powers of 8 .

Decimal Binary		Octal
0	000	0
1	001	1
2	010	2
3	011	3
4	100	4
5	101	5
6	110	6
7	111	7
8	1000	10
9	1001	11
10	1010	12
11	1011	13

Octal Conversions

Converting from binary to octal is simply a matter of grouping the binary positions in groups of three (starting at the least significant position) and writing down the octal equivalent.

Example

Convert the following binary numbers into octal: a) 10110111 b) 01101100

Solution:

a) $10110111=010101111=257$ (add a zero to the left and start from the least significant bit (LSB) make groups of three bits and convert each group into octal)
b) $01101100=001101100=154$

Example

Convert the following octal number into binary: a) 327 b) 601

Solution:

a) $327=011010111=11010111$
(replace each octal number with three equivalent binary numbers even if the number can be represented by less than three bits)
b) $601=110000001=110000001$

- To convert from octal to decimal, (multiply by weighting factors).

Example:

Convert 713 to decimal.

Solution:

$$
713=7 \times 8^{2}+1 \times 8^{1}+3 \times 8^{0}=459
$$

- To convert from decimal to octal, the successive-division procedure or the sum of weights procedure can be used.

Example

Convert the following decimal numbers to octal: a) (596) ${ }_{10}$ b) (100) ${ }_{10}$

Solution:

	8^{3}	8^{2}	8^{1}	8^{0}
	512	64	8	1
$596=$	1	1	2	4
$1000=$	1	7	5	0

b) $1000 \div 8=125$ remainder 0

HEXADECIMAL NUMBERS

The 16 allowable digits are $0,1,2,3,4,5,6,7,8,9, A, B, C, D, E$ and F and the weights are powers of 16 .

Decimal	Binary	Hexadecimal
0	00000000	00
1	00000001	01
2	00000010	02
3	00000011	03
4	00000100	04
5	00000101	05
6	00000110	06
7	00000111	07

8	00001000	08
9	00001001	09
10	00001010	0 A
11	00001011	0 B
12	00001100	0 C
13	00001101	0 D
14	00001110	0 E
15	00001111	0 F
16	00010000	10
17	00010001	11
18	00010010	12
19	00010011	13
20	00010100	14

Hexadecimal Conversion

Converting from binary to hexadecimal is simply a matter of grouping the binary positions in groups of four (starting at the least significant position) and writing down the hexadecimal equivalent.

Example

Convert the following binary numbers into hexadecimal: a) 10101111 b) 01101100

Solution:

a) $10110111=10110111=(\text { B 7 })_{16}$
b) $01101100=01101100=(6 \mathrm{C})_{16}$

Example

Convert the following hexadecimal number into binary: a) A2E b)60F

Solution:

a) $(\mathrm{A} 2 \mathrm{E})_{16}=101000101110=(101000101110)_{2}$
(replace each hexadecimal number with four equivalent binary numbers even if the number can be represented by less than four bits)
b) $(60 \mathrm{~F})_{16}=011000001111=(011000001111)_{2}$

- To convert from hexadecimal to decimal, (multiply by weighting factors).

Example:

Convert (7AD) ${ }_{16}$ to decimal.

Solution:

$(7 \mathrm{AD})_{16}=7 \times 16^{2}+10 \times 16^{1}+13 \times 16^{0}=(1965)_{10}$

- To convert from decimal to hexadecimal, the successive-division procedure or the sum of weights procedure can be used.

Example

Convert the following decimal numbers to hexadecimal: a) (596) ${ }_{10}$ b) (100) ${ }_{10}$

Solution:

	16^{2}	16^{1}	16^{0}
	256	16	1
$596=$	2	5	4
$1000=$	3	E	8

a) $596 \div 16=37$ remainder 4
$37 \div 8=4$ remainder 5
554
$5 \div 8=0$ remainder 5
b) $1000 \div 16=62$ remainder 8
$62 \div 16=3$ remainder 14
3E8
$3 \div 16=0$ remainder 3

1's and 2's COMPLEMENTS

1's and 2's complement allow the representation of negative numbers in binary. In most computers 2 's complement is used to represent negative numbers.

The 1's complement of a binary number is found by simply changing all $1 s$ to 0 s and all 0 s to 1 s .

Example:

Obtain the 1's complement of the following binary numbers: 10001111, 01101100 and 00110011

Solution

The 1 's complement of $10001111=01110000$.
The 1 's complement of $01101100=10010011$.
The 1 's complement of $00110011=11001100$.
The 2's complement of a binary number is found by adding 1 to the LSB of the 1 's complement.

Another way of obtaining the 2's complement of a binary number is to start with the LSB (the rightmost bit) and leave the bits unchanged until you find the first 1. Leave the first 1 unchanged and complement the rest of the bits (change 0 to 1 and 1 to 0).

Example:

Obtain the 2's complement of the following binary numbers: 10001111, 01101100 and 00110011

Solution

The 2 's complement of $10001111=01110000+1=01110001$
The 2's complement of $01101100=10010011+1=01101101$
The 2 's complement of $00110011=11001100+1=00110100$
To convert from a 1's or 2's complement back to the true (uncomplemented) binary form, use the two procedures described previously. To go from the 1s complement back to true binary, reverse all the bits. To go from the 2's complement form back to true binary, take the 1's complement and add 1 to the least significant bit.

REPRESENTATION OF SIGNED NUMBERS

Computer, must be able to handle both positive and negative numbers. There are three basic ways to represent signed numbers; sign-magnitude, 1's complement and 2's complement.

Sign-Magnitude

The number consists of two parts: the MSB (most significant bit) represents the sign and the other bits represent the magnitude of the number. If the sign bit is 1
the number is negative and if it is 0 the number is positive. To illustrate this let us have an example.

Example:

Express each of the following numbers as an 8-bit number in sign-magnitude form:
$-30,30,-121$ and +99 .

Solution:

$-30=10011110$ (The leftmost 1 indicates that the number is negative. The remaining 7-bits carry the magnitude of 30)
$30=00011110$ (The only difference between -30 and +30 is the sign bit because the magnitude bits are similar in both numbers.)
$-121=11111001$
$99=01100011$

Example:

Find the decimal value of each of the following numbers if they are expressed in signmagnitude form: 10111001,11111111 and 01111111.

Solution:

$10111001=-57$ (The leftmost 1 indicates that the number is negative. The remaining 7-bits carry the magnitude of 57)
$11111111=-127$ (The minimum number that can be represented in an 8 -bit register using sign-magnitude representation)
$01111111=+127$ (The maximum number that can be represented in an 8 -bit register using sign-magnitude representation)

Range of numbers in Sign-Magnitude Representation:

In general for an n-bit number, the range of values that could be represented using sign-magnitude notation is from $-\left(2^{n-1}-1\right)$ to $+\left(2^{n-1}-1\right)$. For example if $n=8$ the range is from -127 to 127 .

1's Complement

Negative numbers are represented in 1's complement format whereas positive numbers are represented as the positive sign-magnitude numbers

Example:

Express each of the following numbers as an 8-bit number in 1's complement form:
$30,-30,-121$ and +99 .

Solution:

$30=00011110$
$-30=11100001$ (the number equals the 1 's complement of 30)
$121=01111001$
$-121=10000110$
$99=01100011$

Example:

Find the decimal value of each of the following numbers if they are expressed in 1's complement form: $10111001,11111111,10000000$ and 01111111.

Solution:

$10111001=-01000110=-70$ (The leftmost 1 indicates that the number is negative. Take the 1 's complement of the number to get the magnitude of 70)
$11111111=-00000000=-0$ (That is one of the problem of 1 's complement representation, there are two representations of zero a positive one and a negative one.)
$01111111=+127$ (The maximum number that can be represented in an 8 -bit register using 1's complement representation)
$10000000=-01111111=-127$ (The maximum number that can be represented in an $8-$ bit register using 1's complement representation)

Range of numbers in 1's complement Representation:

It is exactly the same as the range of numbers in sign-magnitude.

2's Complement

Negative numbers are represented in 2's complement format whereas positive numbers are represented exactly the same way as in sign-magnitude and in 1's complement.

Example:

Express each of the following numbers as an 8-bit number in 2's complement form:
$30,-30,-121$ and +99 .

Solution:

$30=00011110$
$-30=11100010$ (the number equals the 2 's complement of 30)
$121=01111001$
$-121=10000111$
$99=01100011$

Example:

Find the decimal value of each of the following numbers if they are expressed in 2's complement form: $10111001,11111111,10000000$ and 01111111.

Solution:

$10111001=-01000111=-71$ (The leftmost 1 indicates that the number is negative. Take the 2's complement of the number to get the magnitude of 71)
$11111111=-00000001=-1$ (The problem of two representations of zero is not found in 2's complement.)
$01111111=+127$ (The maximum number that can be represented in an 8 -bit register using 2's complement representation)
$10000000=-10000000=-128$ (The minimum number that can be represented in an $8-$ bit register using 2's complement representation)

Range of numbers in 2's complement Representation:

In general for an n-bit number, the range of values that could be represented using 2 's complement notation is from $-\left(2^{n-1}\right)$ to $+\left(2^{n-1}-1\right)$. For example if $n=8$ the range is from -128 to 127 .

You may note from the previous examples that a binary number may have different values depending on the type of representation used to interpret this number. The following table clarifies this fact for a 4-bit binary number.

	unsigned	Sign-magnitude	1's complement	2's complement

0000	0	0	0	0
0001	1	1	1	1
0010	2	2	2	2
0011	3	3	3	3
0100	4	4	4	4
0101	5	5	5	5
0110	6	6	6	6
0111	7	7	7	7
1000	8	-0	-7	-8
1001	9	-1	-6	-7
1010	10	-2	-5	-6
1011	11	-3	-4	-5
1100	12	-4	-3	-4
1101	13	-5	-2	-3
1110	14	-6	-1	-2
1111	15	-7	-0	-1

2's Complement Evaluation:

Positive and negative numbers in the 2 's complement system are evaluated by summing the weights in all bit positions where there are 1 s and ignoring those positions where there are zeros. The weight of the sign bit in a negative number is given a negative value.

EXAMPLE

Determine the decimal values of the signed binary numbers expressed in 2 's complement: (a) 01010110 (b) 10101010 .

Solution

(a) The bits and their powers-of-two weights for the positive number are as follows:

-2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2°
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

Summing the weights where there are 1's,
$64+16+4+2=+86$
(b) The bits and their powers-of-two weights for the negative number are as follows.

Notice that the negative sign bit has a weight of $-2^{7}=-128$.

-2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2°
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$

Summing the weights where there are 1's,

$$
-128+32+8+2=-86
$$

From these examples, you can see one of the reasons why the 2 's complement system is preferred for representing signed numbers: It simply requires a summation of weights regardless of whether the number is positive or negative. The signmagnitude system requires two steps-sum the weights of the magnitude bits and examine the sign bit to determine if the number is positive or negative. The 1's complement system requires adding 1 to the summation of weights for negative numbers but not for positive numbers.

Also, the 1 's complement system is generally not used because two representations of zero (00000000 or 11111111) are possible.

The 2's complement system is preferred and is used in most computers because it makes arithmetic operations easier, as you will see.

ARITHMETIC OPERATIONS WITH SIGNED NUMBERS

In the last section, you learned how signed numbers are represented in three different systems. In this section, you will learn how signed numbers are added and subtracted. Because the 2's complement system for representing signed numbers is the most widely used in computers and microprocessor-based systems, the coverage in this section is limited to 2 's complement arithmetic. The processes covered can be extended to the other systems if necessary.

Addition

The two numbers in an addition are the addend and the augend. The result is the sum. There are four cases that can occur when two signed binary numbers are added:

1. Both numbers positive
2. Positive number with magnitude larger than negative number
3. Negative number with magnitude larger than positive number
4. Both numbers negative

Let's take one case at a time using 8 -bit signed numbers as examples. The equivalent decimal numbers are shown for reference.

Both numbers positive:

$$
+00000100 \quad+4
$$

$$
00001011 \quad 11
$$

The sum is positive and is therefore in true (uncomplemented) binary.

Positive number with magnitude larger than negative number:

$$
\begin{array}{r}
00001111 \quad 15 \\
+11111010+-6 \\
\hline
\end{array}
$$

Discard carry — $\quad 00001001 \quad 9$

The final carry bit is discarded. The sum is positive and therefore in true (uncomplented) binary.

Negative number with magnitude larger than positive number:

$$
\begin{array}{r}
00010000 \quad 16 \\
+11101000+-24 \\
\hline
\end{array}
$$

$$
11111000 \quad-8
$$

The sum is negative and therefore in 2's complement form.

Discard carry $\longrightarrow \quad 111110010 \quad-14$
The final carry bit is discarded. The sum is negative and therefore in 2's complement form.In a computer, the negative numbers are stored in 2's complement form so, as you can see, the addition process is very simple: Add the two numbers and discard any final carry bit.

Overflow Condition

When two numbers are added and the number of bits required to represent the sum exceeds the number of bits in the two numbers, an overflow results as indicated by an incorrect sign bit. An overflow can occur only when both numbers are positive or both numbers are negative. The following 8 -bit example will illustrate this condition.

$$
\begin{array}{r}
01111101 \\
+00111010+58 \\
\hline
\end{array}
$$

$$
10110111 \quad 183
$$

Sign incorrect Magnitude incorrect

In this example the sum of 183 requires eight magnitude bits. Since there are seven magnitude bits in the numbers (one bit is the sign), there is a carry into the sign bit which produces the overflow indication.

Numbers Are Added Two at a Time

Subtraction

Subtraction is a special case of addition. For example, subtracting +6 (the subtrahend from +9 (the minuend) is equivalent to adding -6 to +9 . Basically, the subtraction operation changes the sign of the subtrahend and adds it to the minuend. The result of a subtraction is called the difference.

The sign of a positive or negative binary number is changed by taking its 2's complement.

For example, taking the 2 's complement of the positive number $00000100(+4)$, you get 11111100, which is -4 as the following sum-of-weights evaluation shows:
$-128+64+32+16+8+4=-4$

As another example, taking the 2's complement of the negative number 11101101 (19), you get 00010011 , which is +19 as the following evaluation shows:
$16+2+1=19$

Since subtraction is simply an addition with the sign of the subtrahend changed, the process is stated as follows:

To subtract two signed numbers, take the 2 's complement of the subtrahend and add, discarding any final carry bit.

EXAMPLE

Perform each of the following subtractions of the signed numbers:
(a) 00001000-00000011
(b) 00001100-11110111
(c) 11100111-00010011
(d) 10001000-11100010

Solution

Like in other examples, the equivalent decimal subtractions are given for reference.
(a) In this case, $8-3=8+(-3)=5$.

$$
\begin{aligned}
00001000 & \text { Minuend (+8) } \\
+11111101 & \text { 2's complement of subtrahend (-3) }
\end{aligned}
$$

Discard carry $\longrightarrow 100000101$ Difference (+5)
(b) In this case, $12-(-9)=12+9=21$.

$$
\begin{aligned}
00001100 & \text { Minuend }(+12) \\
+00001001 & \text { 2's complement of subtrahend (+9) } \\
\hline 00010101 & \text { Difference }(+21)
\end{aligned}
$$

(c) In this case, $-25-(+19)=-25+(-19)=-44$.

11100111 Minuend (-25)

$$
+111011012 \text { 's complement of subtrahend (-19) }
$$

Discard carry $\longrightarrow 111010100$ Difference (-44)
(d) In this case, $-120-(-30)=-120+30=-90$

$$
\begin{aligned}
10001000 & \text { Minuend }(-120) \\
+00011110 & \text { 2's complement of subtrahend }(+30) \\
\hline 10100110 & \text { Difference }(-90)
\end{aligned}
$$

BINARY CODED DECIMAL (BCD)

The binary coded decimal system is used to represent each of the ten decimal digits as a 4-bit binary code. This code is useful in dealing with decimal numbers. As you know a 4 -bit binary number can represent up to 16 numbers ($0-15$) but there are only 10 decimal digits ($0-9$), so we have 6 representations ($10-15$) which are not used in the BCD code.

To convert a decimal number to BCD replace each digit with a corresponding 4 -bit binary number even if the number can be represented by less than 4 bits. To convert a BCD number into decimal make groups of 4 bits starting from the LSB, if necessary add extra zeroes to the left then convert each 4-bits to decimal.

Decimal	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Example:

Convert the following decimal numbers to BCD: 125, 909 and 1476.

Solution:

$(125)_{10}=000100100101$
$(909)_{10}=100100001001$
$(1476)_{10}=0001010001110110$

Example:

Convert the following BCD numbers to decimal: 100000101001, 1101110010, 1010000101 and 110010000101.

Solution:

$100000101001=(825)_{10}$
$001101110010=(372)_{10}$
$001010000101=(285)_{10}$
$110010000101=$ This number can not be a BCD number because 1100 is the binary representation of 12 and this is not a valid decimal digit.

THE ASCII CODE

To get information into and out of a computer, we need more than just numeric representations; we also have to take care of all the letters and symbols used in day-today processing. Information such as names, addresses, and item descriptions must be input and output in a readable format. But remember that a digital system can deal only with 1's and 0's. Therefore, we need a special code to represent all alphanumeric data (letters, symbols, and numbers).

Most industry has settled on an input/output (I/O) code called the American Standard Code for Information Interchange (ASCII). The ASCII code uses 7 bits to represent all the alphanumeric data used in computer I/O. Seven bits will yield 128 different code combinations, as listed in the following Table. Each time a key is depressed on an ASCII keyboard, that key is converted into its ASCII code and processed by the computer. Then, before outputting the computer contents to a display terminal or printer, all information is converted from ASCII into standard English.

ASCII control characters

Name	Decimal	Hex	..Key,	Description
$N U L$	0	00	$C T R L @$	null character
SOH	1	01	$C T R L A$	start of header
STX	2	02	$C T R L B$	start of text
$E T X$	3	03	$C T R L C$	end of text
$E O T$	4	04	$C T R L D$	end of transmission
$E N Q$	5	05	$C T R L E$	enquire
$A C K$	6	06	$C T R L F$	acknowledge
$B E L$	7	07	$C T R L G$	bell

CHAPTER 1 NUMBER SYSTEMS AND CODES

BS	8	08	CTRL H	backspace
HT	9	09	CTRL I	horizontal tab
LF	10	OA	CTRL J	line feed
$V T$	11	$O B$	CTRL K	vertical tab
FF	12	$O C$	CTRL L	form feed (new page)
$C R$	13	$O D$	CTRL M	carriage return
SO	14	OE	CTRL N	shift out
SI	15	OF	CTRL O	shift in
DLE	16	10	CTRL P	data link escape
DC1	17	11	CTRL Q	device control 1
$D C 2$	18	12	CTRL R	device control 2
DC3	19	13	CTRL S	device control 3
DC4	20	14	CTRL T	device control 4
NAK	21	15	CTRL U	negative acknowledge
SYN	22	16	CTRL V	synchronize
ETB	23	17	CTRL W	end of transmission block
CAN	24	18	CTRL X	cancel
EM	25	19	CTRL Y	end of medium
SUB	26	1 A	CTRL Z	substitute
ESC	27	$1 B$	CTRL [escape
FS	28	1 C	CTRL /	file separator
GS	29	ID	CTRL]	group separator
$R S$	30	1E	$C T R L^{\wedge}$	record separator
US	31	IF	CTRL	unit separator

EXTENDED ASCII CHARACTERS

In addition to the 128 standard ASCII characters, there are an additional 128 characters that were adopted by IBM for use in their PCs. Because of the popularity of the PC, these particular extended ASCII characters are also used in applications other than PCs and have become essentially an unofficial standard.

The extended ASCII characters are represented by an 8-bit code series from hexadecimal 80 to hexadecimal FF. The extended ASCII contains characters in the following general categories:

1. Foreign (non-English) alphabetic characters
2. Foreign currency symbols
3. Greek letters
4. Mathematical symbols

5．DRAWING CHARACTERS

6．Bar graphing characters
7．Shading characters

Extended ASCII characters

$\begin{aligned} & \text { Sym } \\ & \text { bol } \end{aligned}$	Dec	Hex	$\begin{aligned} & \hline \mathrm{Sy} \\ & \mathrm{mb} \\ & \mathrm{ol} \end{aligned}$	Dee	Hex	$\begin{array}{\|l} \hline \text { Sy } \\ \mathrm{mb} \\ \mathrm{ol} \end{array}$	Dec	Hex	Sym bol	Dec	Hex
C	128	80	á	160	A0	L	192	C0	α	224	E0
ü	129	81	í	161	Al	\perp	193	Cl	β	225	E1
é	130	82	ó	162	A2	T	194	C2	Γ	226	E2
â	131	83	ú	163	A3	－	195	C3	π	227	E3
ä	132	84	ñ	164	A4	－	196	C4	Σ	228	E4
à	133	85	N	165	A5	－	197	C5	б	229	E5
$\stackrel{\circ}{\square}$	134	86	$\overline{\mathrm{a}}$	166	A6	＝	198	C6	μ	230	E6
ç	135	87	$\overline{\text { ō }}$	167	A7	－	199	C7	τ	231	E7
ê	136	88	¿	168	A8	\square	200	C8	Φ	232	E8
ë	137	89	－	169	A9	［	201	C9	Θ	233	E9
è	138	8A	\neg	170	AA	IL	202	CA	Ω	234	EA
1	139	8B	1／2	171	AB	\bar{T}	203	CB	δ	235	EB
̂̂	140	8C	1／4	172	AC	F	204	CC	∞	236	EC
i	141	8D	i	173	AD	＝	205	CD	Φ	237	ED
Ä	142	8E	«	174	AE	N	206	CE	ε	238	EE
A	143	8F	＂	175	AF	$\underline{1}$	207	CF	\cap	239	EF
É	144	90	\％	176	B0	IIL	208	DO	\equiv	240	F0
\mathfrak{Z}	145	91	\＃\＃\＃	177	B1	テ	209	D1	\pm	241	F1
Æ	146	92		178	B2	TIT	210	D2	\geq	242	F2
ô	147	93		179	B3	L	211	D3	\leq	243	F3
\ddot{O}	148	94	－	180	B4	E	212	D4	1	244	F4
ò	149	95	－	181	B5	F	213	D5	\div	245	F5
û	150	96	－1	182	B6	－	214	D6	\approx	246	F6
ù	151	97	7	183	B7	＋	215	D7		247	F7
$\ddot{\text { y }}$	152	98	$=$	184	B8	三	216	D8		248	F8
Ö	153	99	\ddagger	185	B9	J	217	D9	。	249	F9
Ü	154	9A	，	186	BA	Γ	218	DA	\bullet	250	FA
ǿ	155	9B	7	187	BB		219	DB		251	FB
£	156	9 C	\pm	188	BC		220	DC	\checkmark	252	FC
¥	157	9D	－	189	BD		221	DD	η	253	FD
P，	158	9E	\pm	190	BE		222	DE	2	254	FE
f	159	9F	7	191	BF		223	DF	－	255	FF

The Excess－3 Code

Excess－3 is a digital code related to BCD that is derived by adding 3 to each decimal digit and then converting the result of that addition to 4－bit binary．Since no definite weights can be assigned to the four digit position，excess－ 3 is an unweighted code that has advantages in certain arithmetic operations．The excess－3 code for decimal 2 is $2+3=5=(0101)_{2}$ The excess－ 3 code for each decimal digit is found by the same procedure．The entire code is shown in the following Table．

Decimal	Binary	Excess -3
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

Notice that ten of the possible 16 code combinations are used in the excess- 3 code. The six invalid combinations are $0000,0001,0010,1101,1110$, and 1111.

Example:

Convert each of the following decimal numbers to excess- 3 code:

(A) $25 \quad$ (B) 630

Solution

First, add 3 to each digit in the decimal number, and then convert each resulting 4-bit sum to its equivalent binary code.

(A) $\mathbf{2 5}=01011000 A D D$ THREE TO BOTH DIGITS TO BE 5 (0101) AND 8 (1000) THEN PUT THE REPRESENTATION OF ALL DIGITS TOGETHER.

(b) $630=100101100011 \quad$ as before $6 \rightarrow 9=(1001)_{2}, 3 \rightarrow 6=(0110)_{2}$ and $0 \rightarrow 3=$ (0011)2.

Self-Complementing Property

The key feature of the excess- 3 code is that it is self-complementing. This means that the 1's complement of an excess-3 number is the excess-3 code for the 9's complement of the corresponding decimal number. The 9's complement of a decimal number is found by subtracting each digit in the number from 9 . For example, the 9 's complement of 4 is 5 . The excess- 3 code for decimal 4 is 0111 . The 1 's complement of this is 1000 , which is the excess3 code for the decimal 5 (and 5 is the 9 's complement of 4).

The usefulness of the 9 's complement and thus excess- 3 stems from the fact that subtraction of a smaller decimal number from a larger one can be accomplished by adding the 9's complement (1 's complement of the excess- 3 code) of the subtrahend (in this case the smaller number) to the minuend and then adding the carry to the result. When subtracting a larger
number from a smaller one, there is no carry, and the result is in 9's complement form and negative. This procedure has a distinct advantage over BCD in certain types of arithmetic logic.

ERROR-DETECTION CODE

Binary information can be transmitted from one location to another by electric wires or other communication medium. Any external noise introduced into the physical communication medium may change some of the bits from 0 to 1 or vice versa. The purpose of an errordetection code is to detect such bit-reversal errors. One of the most common ways to achieve error detection is by means of a parity bit. A parity bit is an extra bit included with a message to make the total number of 1's transmitted either odd or even. A message of four bits and a parity bit P are shown in Table. If an odd parity is adopted, the P bit is chosen such that the total number of 1's is odd in the five bits that constitute the message and P. If an even parity is adopted, the P bit is chosen so that the total number of 1's in the five bits is even. Even parity being more common than odd parity.

The parity bit is helpful in detecting errors during the transmission of information from one location to another. This is done in the following manner. An even parity bit is generated in the sending end for each message transmission. The message, together with the parity bit, is transmitted to its destination. The parity of the received data is checked.

Parity bit

Odd parity			Even parity	
Message	P	Message	P	
0000	1	0000	0	
0001	0	0001	1	
0010	0	0010	1	
0011	1	0011	0	
0100	0	0100	1	
0101	1	0101	0	
0110	1	0110	0	
0111	0	0111	1	
1000	0	1000	1	
1001	1	1001	0	
1010	1	1010	0	
1011	0	1011	1	
1100	1	1100	0	
1101	0	1101	1	
1110	0	1110	1	
1111	1	1111	0	

QUESTIONS

1) Convert the following unsigned binary numbers to decimal, octal, hexadecimal and BCD if possible.
i. 10110010011 ii 110000111000 iii 1000111011
2) Convert the following decimal numbers to binary, octal, hexadecimal and BCD. i. $739 \quad$ ii 504 iii 861
3) What is the minimum number of bits to represent each of the following unsigned decimal numbers: $5110,256,451228$ and 700 .
4) Add, multiply, subtract (A-B) and divide (A/B) each of the following binary numbers:
i. $\quad \mathrm{A}=11010011$
$B=1101$
ii. $\mathrm{A}=101101 \quad \mathrm{~B}=101$
iii. $\mathrm{A}=11101001 \quad \mathrm{~B}=1101$
iv. Represent each of the following decimal numbers (when possible) as an 8 -bit number in each of the following formats: sign-magnitude, 1 's complement and 2's complement.
$\begin{array}{lllllll}\text { i } 134 & \text { ii } & -54 & \text { iii } & -128 & \text { iv } & -150\end{array}$
5) Represent each of the following decimal numbers (when possible) as a 16 -bit number in each of the following formats: sign-magnitude, 1 's complement and 2 's complement.
$\begin{array}{llllllllll}\text { i } 134 & \text { ii } & -54 & \text { iii } & -128 & \text { iv } & -150 & \text { v } 328 & \text { vi } & 1023\end{array}$
6) For each of the following signed decimal numbers, what is the minimum number of bits to represent each of them if you are using: sign-magnitude format, 1's complement and 2's complement formats.
$\begin{array}{llllllllll}\text { i } 134 & \text { ii } & -54 & \text { iii } & -128 & \text { iv } & -150 & \text { v } 328 & \text { vi } & 1023\end{array}$
7) Determine the decimal value of the following signed binary numbers if they are expressed in sign-magnitude, 1 's complement and 2 's complement.
i 10010011 ii 01011010 iii 10000110 iv 11010001
8) If A is a binary number, let $\operatorname{COMP}(\mathrm{A})$ be the 2 's complement of A . prove that $\operatorname{COMP}(\operatorname{COMP}(\mathrm{A}))=\mathrm{A}$.
9) Show that overflow occurs in 2's complement adddition when the carry-out of the leftmost column is the complement of the carry-out of the column next to the left-most. Use four different examples to prove it.
10) An imaginary frog hops half the distance to its goal with eqach jump. Its first jump is 32 cm . How far will it have gone after four jumps? Express your answer in binary and in decimal.
11) How many different values can be formed with an eight-bit code? How many different values can be formed if the most significant bit is always zero?
12) There are about 3000 characters in written Japanese. How many bits minimum would it take to represent the set of Japanese characters?
13) Perform the following arithmetic operations by changing the decimal numbers to 8 -bit binary in 2's complement representation. Check your answer by changing the output from 2's complement to decimal.
$9-15,-28-64,-127+93,-50+100$
14) Perform the following operations if the numbers are in 2 's complement representation. Check for your answer by transforming to decimal. Check if there is an overflow.
i 10010101-11010110
ii $01101100+10111111$
iii $10100011+11001100$
iv $00111100+01010101$
15) What is meant by the overflow?
16) Perform the following operations if the numbers are in 2 's complement representation. Indicate if there is an overflow or not. Check for your answer by transforming to decimal.
i $01110101+01101010$
ii $10010000-01000111$
iii 11010011-10110000
iv 01100000-00111111
17) Perform the following operations if the numbers are in 2 's complement representation. Extend all the numbers to be represented in 8-bits before performing the operation. Indicate if there is an overflow or not. Check for your answer by transforming to decimal.
i 1011-0110
ii 010111-1111
iii $0110-0101010$
iv $1001-110010$
v $10101+0110$
vi $10111+0111$
vii $1110+0101010$
viii $11001+100010$
18) Add an $8^{\text {th }}$ bit for the following binary numbers to act once as an even parity and another time as an odd parity.
i 1010001 ii 1111000
iii 1101110 iv 1110111
19) Convert the following decimal numbers to BCD and excess- 3 .
$102,897,954,045,621$ and 378
20) Writ the following phrase by representing each alphanumeric in ASCII code. Use hex numbers for each character.
"The Little Brown Fox Jumps Over The Lazy Dog...1,2,3,4,5,6,7,8,9"
21) What is the special property of excess-3 code that makes it suitable to represent decimal numbers.
22) Determine the signed decimal value of 10010010 for each of the following representations:
a- Sign-magnitude representation.
b- 2's complement representation.
c- BCD representation.
d- Excess representation
23) Determine the signed decimal value of 01010110 for each of the following representations:
a- Sign-magnitude representation.
b- 2's complement representation.
c- BCD representation.
24) -Perform the subtraction of $(36-99)_{10}$ using the 2 's complement representation. Verify your answer by converting into decimal.

CHAPTER 2

LOGIC GATES

Boolean Variables \& Truth Tables

Boolean algebra differs in a major way from ordinary algebra in that boolean constants and variables are allowed to have only two possible values, 0 or 1 .

Boolean 0 and 1 do not represent actual numbers but instead represent the state of a voltage variable, or what is called its logic level.

Some common representation of 0 and 1 is shown in the following diagram.

LOGIC 0	LOGIC 1
False	True
Off	On
Low	High
No	Yes
Open Switch	Close Switch

In boolean algebra, there are three basic logic operations: OR, AND and NOT. These logic gates are digital circuits constructed from diodes, transistors, and resistors connected in such a way that the circuit output is the result of a basic logic operation (OR, AND, NOT) performed on the inputs.

Truth Table

A truth table is a means for describing how a logic circuit's output depends on the logic levels present at the circuit's inputs.

In the following two-inputs logic circuit, the table lists all possible combinations of logic levels present at inputs A and B along with the corresponding output level X.

A	B	$X=A+B$
0	0	0
0	1	1
1	0	1
1	1	1

When either input A OR B is 1 , the output X is 1 . Therefore the function is an OR gate.

OR Operation

The expression $\mathrm{X}=\mathrm{A}+\mathrm{B}$ reads as " X equals A OR B".
The + sign stands for the OR operation, not for ordinary addition.
The OR operation produces a result of 1 when any of the input variable is 1.
The OR operation produces a result of 0 only when all the input variables are 0 .
Two Inpuls OR Gebp

A	B	$X=A+B$
0	0	0
0	1	1
1	0	1
1	1	1

An example of three input OR gate and its truth table is as follows:

A	8	C	$x=A+B+C$
0	0	0	0
0	0	1	I
0	1	0	1
0	I	i-	1
1	0	0	I
i	0	1	i
I	i	0	I
i	i	1	

With the OR operation, $1+1=1,1+1+1=1$ and so on.

Timing Diagrams of OR gates

A timing diagram is a graph that displays the relationship of two or more waveforms with respect to time. The following example explains the operation of an OR gate with pulsed inputs.

Example

If the two input waveforms A and B are applied to an OR gate, what is the resulting output waveform?

When either input or both inputs are HIGH, the output is HIGH

An application: Alarm System

A simplified portion of an intrusion detection and alarm system is shown. This system could be used for one room in a home a room with two windows and a door. The sensors are magnetic switches that produce a HIGH output when open and a LOW output when closed. As long as the windows and the door are secured, the switches are closed and all three of the OR gate inputs are LOW. When one of the windows or the door is opened, a HIGH is produced on that input to the OR gate and the gate output goes HIGH. It then activates an alarm circuit to warn of the intrusion.

Open door/window
sensors
HIGH = open
LOW = closed

AND Operation

The expression $\mathrm{X}=\mathrm{A} \bullet \mathrm{B}$ reads as " X equals A AND B".
The multiplication sign stands for the AND operation, same for ordinary multiplication of 1 s and 0 s .

The AND operation produces a result of 1 occurs only for the single case when all of the input variables are 1 .

The output is 0 for any case where one or more inputs are 0

A	B	$\mathrm{X}=\mathrm{A} * \mathrm{~B}$
0	0	0
0	1	0
["	0	0
I	i	I

An example of three input AND gate and its truth table is as follows:

A	B	C	$\mathrm{X}=\mathrm{A}^{*} \mathrm{~B}^{*} \mathrm{C}$
0	0	0	0
0	0	1	0
0	1	0	0
0	I	i	0
1	0	0	0
i	0	i	0
I	I	0	0
i	I	1	i

With the AND operation, $1 \cdot 1=1,1 \cdot 1 \cdot 1=1$ and so on.

Timing Diagrams of AND gates

To examine the operation of the AND gate, study the inputs at a certain time to determine the corresponding output.

Example

If the two input waveforms A and B are applied to an AND gate, what is the resulting output waveform?

The output waveform is HIGH only when both inputs are high as shown.

An application: A Seat Belt Alarm System

an AND gate is used in a simple car seat belt alarm system to detect when the ignition switch is on and the seat belt is unbuckled. If the ignition switch is on, a HIGH is produced on input A of the AND gate. If the seat belt is not properly buckled, a HIGH is produced on input B of the AND gate. Also, when the ignition switch is turned on, a timer is started that produces a HIGH on input C for 30 s .

If all three conditions exist-that is, if the ignition is on and the seat belt is unbuckled and the timer is running - the output of the AND gate is HIGH, and an audible alarm is energized to remind the driver.

NOT Operation

The NOT operation is unlike the OR and AND operations in that it can be performed on a single input variable. For example, if the variable A is subjected to the NOT operation, the result x can be expressed as
$\mathrm{x}=\mathrm{A}^{\prime}$
where the prime (') represents the NOT operation. This expression is read as:
x equals NOT A
x equals the inverse of A
x equals the complement of A
Each of these is in common usage and all indicate that the logic value of $\mathrm{x}=\mathrm{A}^{\prime}$ is opposite to the logic value of A.

The truth table of the NOT operation is as follows:

$1^{\prime}=0$ because NOT 1 is 0
$0^{\prime}=1$ because NOT 0 is 1
The NOT operation is also referred to as inversion or complementation, and these terms are used interchangeably.

NOR Operation

NOR and NAND gates are used extensively in digital circuitry. These gates combine the basic operations AND, OR and NOT, which make it relatively easy to describe then using Boolean Algebra.

NOR is the same as the OR gate symbol except that it has a small circle on the output. This small circle represents the inversion operation. Therefore the output expression of the two input NOR gate is:
$X=(A+B)^{\prime}$
Two hrits MOR Gebe

TVPUTS		OR	NOR
A	B	$\mathrm{X}=\mathrm{A}+\mathrm{B}$	$\mathrm{X}=(\mathrm{A}+\mathrm{B})$
0	0	0	1
0	1	I	0
1	0	I	0
1	i	1	0

An example of three input OR gate can be constructed by a NOR gate plus a NOT gate:

Three hputs OR gete constuctac with e NOR Gebs and a NOT gebs

Negative AND equivalent of a NOR gate

The truth table of the NOR gate shows that a HIGH is produced on the gate output only if all of the inputs are LOW. From this viewpoint, the NOR gate can be used for an AND operation that requires all LOW inputs to produce a HIGH output. This mode of operation is called
negative-AND. The term negative means that the inputs are defined to be in the active state when LOW.

In the operation of a 2 -input NOR gate functioning as a negative-AND gate, output X is HIGH if both inputs/A and B are LOW.

An application: An aircraft landing indicator

Problem: In an aircraft, as part of its functional monitoring system, a circuit is required to indicate the status of the landing gear prior to landing. A green LED display turns on if all three gears are properly extended when the "gear down" switch has been activated in preparation for landing. A red LED display turns on if any of the gears fail to extend properly prior to landing. When a landing gear is extended, its sensor produces a LOW voltage. When a landing gear is retracted, its sensor produces a HIGH voltage. Implement a circuit to meet this requirement.

Solution Power is applied to the circuit only when the "gear down" switch is activated. Use a NOR gate for each of the two requirements as shown in figure. One NOR gate operates as a negative-AND to detect a LOW from each of the three landing geal sensors. When all three of the gate inputs are LOW, the three landing gear are properly extended and the resulting HIGH output from the negative-AND gate turns on the green LED display. The other NOR gate operates as a NOR to detect if one or more of the landing gear remain retracted when the "gear down" switch is activated. When one or more of the landing gear remain retracted, the resulting HIGH from the sensor is detected by the NOR gate, which produces a LOW output to turn on the red LED warning display.

NAND Operation

NAND is the same as the AND gate symbol except that it has a small circle on the output. This small circle represents the inversion operation. Therefore the output expression of the two input NAND gate is:
$\mathrm{X}=(\mathrm{AB})^{\prime}$
Two Inputs NAND Gate

ITPPUTS		AND	NAEND
A	B	$\mathrm{X}=\mathrm{AB}$	$\mathrm{X}=(\mathrm{AB})$
0	0	0	1
0	1	0	1
1	0	0	I
I	i	i	0

Negative OR Equivalent Operation of the NAND Gate

In the NAND gate's operation, one or more LOW inputs produce a HIGH output. The previous truth table shows that output X is HIGH (1) when any of the inputs, A and B, are LOW (0). From this viewpoint, the NAND gate can be used for an OR operation that requires one or more LOW inputs to produce a HIGH output. This mode of operation is referred to as negative-OR. The term negative means that the inputs are defined to be in the active state when LOW.

In the operation of a 2 -input NAND gate functioning as a negative-OR gate, output X is HIGH if either input A or input B is LOW, or if both A and Bare LOW.

An application: A Manufacturing Plant Tank Indicator

Problem: A manufacturing plant uses two tanks to store a certain liquid chemical that is required in a manufacturing process. Each tank has a sensor that detects when the chemical level drops to 25% of full. The sensors produce a 5 V level when the tanks are more than onequarter full. When the volume of chemical in a tank drops to one-quarter full, the sensor puts out a 0 V level.

It is required that a single green light-emitting diode (LED) on an indicator panel show when both tanks are more than one quarter full. Show how a NAND gate can be used to implement this function.

Solution: As long as both sensor outputs are HIGH, indicating that both tanks are more than one quarter full, the NAND gate output is LOW. The green LED circuit is arranged so that a low voltage turns it ON.

THE EXCLUSIVE-OR AND EXCLUSIVE-NOR GATES

The exclusive-OR and exclusive-NOR gates are formed by the combination of other logic gates you have already studied. Because of their versatile range of applications, they are treated as basic gates and given their own symbols.

The Exclusive- OR Gate

The symbol of exclusive-OR (XOR for short) is shown along with its truth table.

Inputs		output
A	B	X
0	0	0
0	1	1
1	0	1
1	1	0

The symbol used to express the XOR is: $\mathbf{X}=\mathbf{A} \oplus \mathbf{B}$. From the truth table, the operation of the XOR can be summarized as:

In an XOR gate operation, output X is HIGH if input A is LOW and input B is HIGH, or if input A is HIGH and input B is LOW; X is LOW if A and B are both HIGH or both LOW.

The Exclusive-NOR Gate

The symbol of exclusive-NOR (XNOR for short or equivalence) is shown along with its truth table.

Inputs		output
A	B	X
0	0	1
0	1	0
1	0	0
1	1	1

The symbol used to express the XNOR is: $\mathbf{X}=\mathbf{A} \odot \mathbf{B}$. From the truth table, the operation of the XNOR can be summarized as:

In an XNOR gate operation, output X is LOW if input A is LOW and input B is HIGH, or if input A is HIGH and input B is LOW; X is HIGH if A and B are both HIGH or both LOW.

It is obvious that the XNOR is the complement of the XOR which is the reason of the bubble in the symbol of the XNOR.

Timing diagram

EXAMPLE:

INTEGRATED CIRCUIT LOGIC FAMILIES

There are several different families of logic gates. Each family has its capabilities and limitations, its advantages and disadvantages. The following list describes the main logic families and their characteristics. You can follow the links to see the circuit construction of gates of each family.

Diode Logic (DL)

Diode logic gates use diodes to perform AND and OR logic functions. Diodes have the property of easily passing an electrical current in one direction, but not the other. Thus, diodes can act as a logical switch.

Diode logic gates are very simple and inexpensive, and can be used effectively in specific situations. However, they cannot be used extensively, as they tend to degrade digital signals rapidly. In addition, they cannot perform a NOT function, so their usefulness is quite limited.

In the figure above, you see a basic Diode Logic OR gate. We'll assume that a logic 1 is represented by +5 volts, and a logic 0 is represented by ground, or zero volts. In this figure, if
both inputs are left unconnected or are both at logic 0 , output Z will also be held at zero volts by the resistor, and will thus be a logic 0 as well. However, if either input is raised to +5 volts, its diode will become forward biased and will therefore conduct. This in turn will force the output up to logic 1 . If both inputs are logic 1 , the output will still be logic 1 . Hence, this gate correctly performs a logical OR function.

The figure above shows the equivalent AND gate. We use the same logic levels, but the diodes are reversed and the resistor is set to pull the output voltage up to a logic 1 state. For this example, $+\mathrm{V}=+5$ volts, although other voltages can just as easily be used. Now, if both inputs are unconnected or if they are both at logic 1 , output Z will be at logic 1 . If either input is grounded (logic 0), that diode will conduct and will pull the output down to $\operatorname{logic} 0$ as well. Both inputs must be logic 1 in order for the output to be logic 1 , so this circuit performs the logical AND function.

Resistor-Transistor Logic (RTL)

Resistor-transistor logic gates use Transistors to combine multiple input signals, which also amplify and invert the resulting combined signal. Often an additional transistor is included to re-invert the output signal. This combination provides clean output signals and either inversion or non-inversion as needed.

RTL gates are almost as simple as DL gates, and remain inexpensive. They also are handy because both normal and inverted signals are often available. However, they do draw a significant amount of current from the power supply for each gate. Another limitation is that RTL gates cannot switch at the high speeds used by today's computers, although they are still useful in slower applications.

In this circuit, each transistor has its own separate input resistor, so each is controlled by a different input signal. However, the only way the output can be pulled down to $\operatorname{logic} 0$ is if both transistors are turned on by logic 1 inputs. If either input is a logic 0 that transistor cannot conduct, so there is no current through either one. The output is then a logic 1. This is the behavior of a NAND gate. Of course, an inverter can also be included to provide an AND output at the same time.

Diode-Transistor Logic (DTL)

By letting diodes perform the logical AND or OR function and then amplifying the result with a transistor, we can avoid some of the limitations of RTL. DTL takes diode logic gates and adds a transistor to the output, in order to provide logic inversion and to restore the signal to full logic levels.

The above gate t is a DL OR gate followed by an inverter. The OR function is still performed by the diodes. However, regardless of the number of logic 1 inputs, there is certain to be a high enough input voltage to drive the transistor into saturation. Only if all inputs are logic 0 will the transistor be held off. Thus, this circuit performs a NOR function.

The advantage of this circuit over its RTL equivalent is that the OR logic is performed by the diodes, not by resistors. Therefore there is no interaction between different inputs, and any number of diodes may be used. A disadvantage of this circuit is the input resistor to the transistor. Its presence tends to slow the circuit down, thus limiting the speed at which the transistor is able to switch states.

Transistor-Transistor Logic (TTL)

The physical construction of integrated circuits made it more effective to replace all the input diodes in a DTL gate with a transistor, built with multiple emitters. The result is transistortransistor logic, which became the standard logic circuit in most applications for a number of years.

As the state of the art improved, TTL integrated circuits were adapted slightly to handle a wider range of requirements, but their basic functions remained the same. These devices comprise the 7400 family of digital ICs.

The preceding figure shows an inverter designed with TTL logic.

The preceding figure shows a 4-input NAND gate designed with TTL logic.

Emitter-Coupled Logic (ECL)

Also known as Current Mode Logic (CML), ECL gates are specifically designed to operate at extremely high speeds, by avoiding the "lag" inherent when transistors are allowed to become saturated. Because of this, however, these gates demand substantial amounts of electrical current to operate correctly.

CMOS Logic

One factor is common to all of the logic families we have listed above: they use significant amounts of electrical power. Many applications, especially portable, battery-powered ones, require that the use of power be absolutely minimized. To accomplish this, the CMOS (Complementary Metal-Oxide-Semiconductor) logic family was developed. This family uses enhancement-mode MOSFETs as its transistors, and is so designed that it requires almost no current to operate.

CMOS gates are, however, severely limited in their speed of operation. Nevertheless, they are highly useful and effective in a wide range of battery-powered applications.

CMOS logic is a newer technology, based on the use of complementary MOS transistors to perform logic functions with almost no current required. This makes these gates very useful in battery-powered applications. The fact that they will work with supply voltages as low as 3 volts and as high as 15 volts is also very helpful.

CMOS gates are all based on the fundamental inverter circuit shown above. Note that both transistors are enhancement-mode MOSFETs; one N-channel with its source grounded, and one P-channel with its source connected to +V . Their gates are connected together to form the input, and their drains are connected together to form the output.

The two MOSFETs are designed to have matching characteristics. Thus, they are complementary to each other. When off, their resistance is effectively infinite; when on, their channel resistance is about 200Ω. Since the gate is essentially an open circuit it draws no current, and the output voltage will be equal to either ground or to the power supply voltage, depending on which transistor is conducting.

When input A is grounded (logic 0), the N -channel MOSFET is unbiased, and therefore has no channel enhanced within itself. It is an open circuit, and therefore leaves the output line disconnected from ground. At the same time, the P-channel MOSFET is forward biased, so it has a channel enhanced within itself. This channel has a resistance of about 200Ω, connecting the output line to the +V supply. This pulls the output up to +V (logic 1).

When input A is at $+\mathrm{V}(\operatorname{logic} 1)$, the P -channel MOSFET is off and the N -channel MOSFET is on, thus pulling the output down to ground (logic 0). Thus, this circuit correctly performs logic inversion, and at the same time provides active pull-up and pull-down, according to the output state.

This concept can be expanded into NOR and NAND structures by combining inverters in a partially series, partially parallel structure

Most logic families share a common characteristic: their inputs require a certain amount of current in order to operate correctly. CMOS gates work a bit differently, but still represent a capacitance that must be charged or discharged when the input changes state. The current required to drive any input must come from the output supplying the logic signal. Therefore, we need to know how much current an input requires, and how much current an output can reliably supply, in order to determine how many inputs may be connected to a single output.

However, making such calculations can be tedious, and can bog down logic circuit design. Therefore, we use a different technique. Rather than working constantly with actual currents, we determine the amount of current required to drive one standard input, and designate that as a standard load on any output. Now we can define the number of standard loads a given output can drive, and identify it that way. Unfortunately, some inputs for specialized circuits require more than the usual input current, and some gates, known as buffers, are deliberately designed to be able to drive more inputs than usual. For an easy way to define input current requirements and output drive capabilities, we define two new terms:

Fan-in

The number of standard loads drawn by an input to ensure reliable operation. Most inputs have a fan-in of 1 .

Fan-out

The number of standard loads that can be reliably driven by an output, without causing the output voltage to shift out of its legal range of values.

Comparison of performance characteristics of CMOS, TTL and ECL logic gates.

Technology	CMOS (silicon gate)	CMOS (metal gate)	TTL std	TTL LS	TTL S	TTL ALS	TTL AS	ECL
Device series	74 HC	4000 B	74	74 LS	74 S	74 ALS	74 AS	10 KH
Power dissipation: Static	1 uW	10 mW	2 mW	19 mW	1 mW	8.5 mW	25 mW	
At 100 kHz	0.17 mW	0.1 mW	10 mW	2 mW	19 mW	1 mW	8.5 mW	25 mW
Propagation delay time	8 ns	50 ns	10 ns	10 ns	3 ns	4 ns	1.5 ns	1 ns
Fan-out			10	20	20	20	40	

Std : standard
LS: Low power
Schottky
S: Schottky
ALS: Advanced Low power Schottky AS: Advanced Schottky

QUESTIONS

Choose the correct answers in the following questions.

1. Boolean algebra is different from ordinary algebra in which way?
i. Boolean algebra can represent more than 1 discrete level between 0 and 1
ii. Boolean algebra have only 2 discrete levels: 0 and 1
iii. Boolean algebra can describe up to 3 levels of logic levels
iv. They are actually the same
v. NA

The following 2 questions are referred to the below image:

2. What is the output X if both inputs A and B are 0 ?
i. 0
ii. 1
iii. I don't know
iv. NA
3. What is the output X if $\mathrm{A}=1$ and $\mathrm{B}=0$?
i. 0
ii. $\quad 1$
iii. I don't know
iv. NA
4. For a three inputs (A,B C) OR gate, what inputs are needed if output=0?
i. $\quad \mathrm{A}=0, \mathrm{~B}=0, \mathrm{C}=1$
ii. $\quad \mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=0$
iii. $\mathrm{A}=1, \mathrm{~B}=1, \mathrm{C}=1$
iv. $\mathrm{A}=0, \mathrm{~B}=0, \mathrm{C}=0$
v. NA

The following 2 questions are referred to the below image:

5. What is the output X if input $\mathrm{A}=1, \mathrm{~B}=0$ and $\mathrm{C}=1$?
i. 0
ii. $\quad 1$
iii. I don't know
iv. NA
6. What inputs are needed if output=1?
i. $\quad \mathrm{A}=0, \mathrm{~B}=0, \mathrm{C}=0$
ii. $\quad \mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=1$
iii. $\quad \mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=0$
iv. $\quad \mathrm{A}=1, \mathrm{~B}=1, \mathrm{C}=1$
v. NA

The following 2 questions are related to the below image:

7. What is the ouput of the above gate if input $\mathrm{A}=0, \mathrm{~B}=1$?
v. 0
vi. 1
vii. not sure
viii. NA
8. What are the value of the inputs if output $=1$?
i. $\quad \mathrm{A}=0, \mathrm{~B}=0$
ii. $\quad \mathrm{A}=0, \mathrm{~B}=1$
iii. $\mathrm{A}=1, \mathrm{~B}=0$
iv. $\quad \mathrm{A}=1, \mathrm{~B}=1$
v. I don't know

The following 2 questions are related to the below image:

9. What are the values of the inputs if output $=0$?
i. $\quad \mathrm{A}=0, \mathrm{~B}=0$
ii. $\quad \mathrm{A}=0, \mathrm{~B}=1$
iii. $\quad \mathrm{A}=1, \mathrm{~B}=0$
iv. $\mathrm{A}=1, \mathrm{~B}=1$
v. I don't know
10. For the truth table below, what type of logic gate is it?

i. 3 Inputs OR
ii. 3 Inputs AND
iii. 3 Inputs NOR
iv. 3 Inputs NAND
v. Not sure
11. If the two input waveforms A and B are applied to an AND gate, draw a timing diagram for the resulting output waveform?

12. If the three input waveforms A, B and C are applied to a three input AND gate, draw a timing diagram for the resulting output waveform?

13. Repeat problems 11 and 12 using OR gates.
14. Repeat problems 11 and 12 using NOR gates.
15. Repeat problems 11 and 12 using NAND gates.
16. Repeat problem 11 using XOR gate.
17. Repeat problem 11 using XNOR gate.
18. Prove that $\mathrm{A} \oplus \mathrm{B}=\mathrm{A}^{\prime} \mathrm{B}+\mathrm{AB}^{\prime}$.
19. Prove that $A \odot B=A B+A^{\prime} B^{\prime}$.
20. . In the comparison of certain logic devices, it is noted that the power dissipation for one particular type increases as the frequency increases. Is the device TTL or CMOS?
21. Using the table which compares logic families, determine which logic series offers the best performance considering both switching speed and power dissipation at 100 kHz . Note: Find the speed-power product of each and compare the results.
22. Sensors are used to monitor the pressure and the temperature of a chemical solution stored in a vat. The circuitry for each sensor produces a HIGH voltage when a specified maximum value is exceeded. An alarm requiring a LOW voltage input must be activated when either the pressure or the temperature is excessive. Design a circuit for this application?
23. Modify the logic circuit for the intrusion alarm introduced in this chapter so that two additional rooms, each with two windows and one door, can be protected

CHAPTER 3

Boolean Algebra

Describing Logic Circuits Algebraically

Any logic circuit, no matter how complex, may be completely described using the Boolean operations, because the OR gate, AND gate, and NOT circuit are the basic building blocks of digital systems.

This is an example of the circuit using Boolean expression:

If an expression contains both AND and OR operations, the AND operations are performed first $(X=A B+C: A B$ is performed first), unless there are parentheses in the expression, in which case the operation inside the parentheses is to be performed first $(X=(A+B)+C: A+B$ is performed first).

Circuits containing Inverters

Whenever an inverter is present in a logic-circuit diagram, its output expression is simply equal to the input expression with a prime (') over it.

Evaluating Logic Circuit Outputs

Once the Boolean expression for a circuit output has been obtained, the output logic level can be determined for any set of input levels.

This are two examples of the evaluating logic circuit output:
Let $\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=1, \mathrm{D}=1$

$$
\begin{aligned}
\mathrm{X} \quad & =\mathrm{A}^{\prime} \mathrm{BC}(\mathrm{~A}+\mathrm{D})^{\prime} \\
& =0^{\prime} \cdot 1 \cdot 1 \cdot(0+1)^{\prime} \\
& =1 \cdot \cdot 1 \cdot 1 \cdot(1)^{\prime} \\
& =1 \cdot 1 \cdot 1 \cdot 0 \\
& =0
\end{aligned}
$$

Let $\mathrm{A}=0, \mathrm{~B}=0, \mathrm{C}=1, \mathrm{D}=1, \mathrm{E}=1$

$$
\begin{aligned}
\mathrm{X} & =\left[\mathrm{D}+((\mathrm{A}+\mathrm{B}) \mathrm{C})^{\prime}\right] \cdot \mathrm{E} \\
& =\left[1+((0+0) 1)^{\prime}\right] \cdot 1 \\
& =\left[1+(0 \cdot 1)^{\prime}\right] \cdot 1 \\
& =\left[1+0^{\prime}\right] \cdot 1 \\
& =[1+1] \cdot 1 \\
& =1
\end{aligned}
$$

In general, the following rules must always be followed when evaluating a Boolean expression:
i. First, perform all inversions of single terms; that is, $0=1$ or $1=0$.
ii. Then perform all operations within parentheses.
iii. Perform an AND operation before an OR operation unless parentheses indicate otherwise.
iv. If an expression has a bar over it, perform the operations of the expression first and then invert the result.

Determining Output Level from a Diagram

The output logic level for given input levels can also be determined directly from the circuit

diagram without using the Boolean expression.

Implementing Circuits From Boolean Expression

If the operation of a circuit is defined by a Boolean expression, a logic-circuit diagram can he implemented directly from that expression.

Suppose that we wanted to construct a circuit whose output is $y=A C+\mathrm{BC}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}$. This Boolean expression contains three terms (AC, $\mathrm{BC}^{\prime}, \mathrm{A}^{\prime} \mathrm{BC}$), which are ORed together. This tells us that a three-input OR gate is required with inputs that are equal to $\mathrm{AC}, \mathrm{BC}^{\prime}$, and $\mathrm{A}^{\prime} \mathrm{BC}$, respectively.

Each OR-gate input is an AND product term, which means that an AND gate with appropriate inputs can be used to generate each of these terms. Note the use of inverters to produce the A^{\prime} and C^{\prime} terms required in the expression.

Boolean Theorems

Investigating the various Boolean theorems (rules) can help us to simplify logic expressions and logic circuits.
(1) $\times \cdot 0=0$

(2) $\times \cdot 1=\times$

(3) $X \cdot X=X$

(4) $X \cdot X^{\prime}=0$

(5) $x+0=x$

(6) $X+1=1$

(7) $X+X=X$

(8) $X+X^{\prime}=1$

Multivariable Theorems

The theorems presented below involve more than one variable:

$$
\begin{align*}
& \mathrm{x}+\mathrm{y}=\mathrm{y}+\mathrm{x} \text { (commutative law) } \tag{9}\\
& \mathrm{x} \bullet \mathrm{y}=\mathrm{y} \cdot \mathrm{x}(\text { commutative law) } \tag{10}\\
& \mathrm{x}+(\mathrm{y}+\mathrm{z})=(\mathrm{x}+\mathrm{y})+\mathrm{z}=\mathrm{x}+\mathrm{y}+\mathrm{z} \text { (associative law) } \tag{11}\\
& \mathrm{x}(\mathrm{yz})=(\mathrm{xy}) \mathrm{z}=\mathrm{xyz} \text { (associative law) } \tag{12}\\
& \mathrm{x}(\mathrm{y}+\mathrm{z})=\mathrm{xy}+\mathrm{xz} \text { (distributive law) } \tag{13a}\\
& \mathrm{x}+\mathrm{yz}=(\mathrm{x}+\mathrm{y})(\mathrm{x}+\mathrm{z}) \text { (distributive law) } \tag{13b}\\
& (\mathrm{w}+\mathrm{x})(\mathrm{y}+\mathrm{z})=\mathrm{wy}+\mathrm{xy}+\mathrm{wz}+\mathrm{xz} \tag{13c}\\
& \mathrm{x}+\mathrm{xy}=\mathrm{x}[\text { proof see below }] \tag{14}\\
& \mathrm{x}+\mathrm{x} \cdot \mathrm{y}=\mathrm{x}+\mathrm{y} \tag{15}\\
& (\mathrm{x}+\mathrm{y})(\mathrm{x}+\mathrm{z})=\mathrm{x}+\mathrm{yz} \tag{16}\\
& \mathrm{x}+\mathrm{xy}=\mathrm{x} \quad \text { (absorption }) \tag{17}
\end{align*}
$$

$$
\begin{aligned}
\mathrm{x}+\mathrm{xy} & =\mathrm{x}(1+\mathrm{y}) \\
& =\mathrm{x} \cdot 1[\text { using theorem }(6)] \\
& =\mathrm{x}[\text { using theorem }(2)]
\end{aligned}
$$

Proof of (15)

$$
\begin{aligned}
\mathrm{x}+\mathrm{x}^{\prime} \mathrm{y} & \left.=\left(\mathrm{x}+\mathrm{x}^{\prime}\right)(\mathrm{x}+\mathrm{y}) \quad \text { [theorem } 13 b\right] \\
& =1(\mathrm{x}+\mathrm{y}) \\
& =(\mathrm{x}+\mathrm{y})
\end{aligned}
$$

Proof of (16)

$$
\begin{aligned}
(x+y)(x+z) & =x x+x z+y x+y z \\
& =x+x z+y x+y z \\
& =x(1+z+y)+y z \\
& =x \cdot 1+y z \\
& =x+y z
\end{aligned}
$$

EXAMPLE

The logic circuit shown in Figure is used to turn on a warning bell at X based on the input conditions at A, B, and C . A simplified equivalent circuit that will perform the same function can be formed by using Boolean algebra. Write the equation of the circuit in Figure, simplify the equation, and draw the logic circuit of the simplified equation.

Solution:
The Boolean equation for X is
$X=B(A+\mathrm{C})+\mathrm{C}=B A+B C+C=\mathrm{BA}+\mathrm{C}(\mathrm{B}+1)=\mathrm{BA}+\mathrm{C} \cdot 1=\mathrm{BA}+\mathrm{C}$
$\mathrm{X}=\mathrm{BA}+\mathrm{C}$
The logic circuit of the simplified equation is shown in Figure.

DeMorgan's Theorem

DeMorgan's theorems are extremely useful in simplifying expressions in which a product or sum of variables is inverted. The two theorems are:
(18) $(x+y)^{\prime}=x^{\prime} \cdot y^{\prime}$
(19) $(x \cdot y)^{\prime}=x^{\prime}+y^{\prime}$

Theorem (18) says that when the OR sum of two variables is inverted, this is the same as inverting each variable individually and then ANDing these inverted variables.

Theorem (19) says that when the AND product of two variables is inverted, this is the same as inverting each variable individually and then ORing them.

Example

$$
\begin{aligned}
\mathrm{X} & =\left[\left(\mathrm{A}^{\prime}+\mathrm{C}\right) \cdot\left(\mathrm{B}+\mathrm{D}^{\prime}\right)\right]^{\prime} \\
& =\left(\mathrm{A}^{\prime}+\mathrm{C}\right)^{\prime}+\left(\mathrm{B}^{\prime}+\mathrm{D}^{\prime}\right)^{\prime} \\
& =\left(\mathrm{AC}^{\prime}\right)+\left(\mathrm{B}^{\prime} \mathrm{D}\right) \\
& =\mathrm{AC}^{\prime}+\mathrm{B}^{\prime} \mathrm{D}
\end{aligned}
$$

Three Variables DeMorgan's Theorem

(20) $(x+y+z)^{\prime}=x^{\prime} \cdot y^{\prime} \cdot z^{\prime}$
(21) (xyz) $=x^{\prime}+y^{\prime}+z^{\prime}$

Implications of DeMorgan's Theorem

$(\mathrm{x}+\mathrm{y})^{\prime}=\mathrm{x}^{\prime} \cdot \mathrm{y}^{\prime}$

Alternative symbol for the NOR function

$$
(x \cdot y)^{\prime}=x^{\prime}+y^{\prime}
$$

Alternative symbol for the NA.ND function

EXAMPLE:

Apply DeMorgan's theorems to each of the following expressions:
(a) $\overline{(A+B+C) D}$
(b) $\overline{\mathrm{ABC}+\mathrm{DEF}}$
(c) $\overline{A \bar{B}}+\bar{C} D+E F$

solution:

(a) $\overline{(\mathrm{A}+\mathrm{B}+\mathrm{C}) \mathrm{D}}=\overline{\mathrm{A}+\mathrm{B}+\mathrm{C}}+\overline{\mathrm{D}}=\overline{\mathrm{AB}} \overline{\mathrm{C}}+\overline{\mathrm{D}}$
(b)

$$
\overline{\mathrm{ABC}+\mathrm{DEF}}=(\overline{\mathrm{ABC}})(\overline{\mathrm{DEF}})=(\overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}})(\overline{\mathrm{D}}+\overline{\mathrm{E}}+\overline{\mathrm{F}})
$$

(c) $\overline{\mathrm{A} \overline{\mathrm{B}}+\overline{\mathrm{C}} \mathrm{D}+\mathrm{EF}}=\overline{(\mathrm{A} \overline{\mathrm{B}})}(\overline{\mathrm{C}} \mathrm{D})(\overline{\mathrm{EF}})=(\overline{\mathrm{A}}+\mathrm{B})(\mathrm{C}+\overline{\mathrm{D}})(\overline{\mathrm{E}}+\overline{\mathrm{F}})$

Universality of NAND \& NOR Gates

It is possible to implement any logic expression using only NAND gates and no other type of gate. This is because NAND gates, in the proper combination, can be used to perform each of the Boolean operations OR, AND, and INVERT.

A

In a similar manner, it can be shown that NOR gates can be arranged to implement any of the Boolean operations.

Alternate Logic Gate Representations

The left side of the illustration shows the standard symbol for each logic gate, and the right side shows the alternate symbol. The alternate symbol for each gate is obtained from the standard symbol by doing the following:

1. Invert each input and output of the standard symbol. This is done by adding bubbles (small circles) on input and output lines that do not have bubbles, and by removing bubbles that are already there.
2. Change the operation symbol from AND to OR, or from OR to AND. (In the special case of the INVERTER, the operation symbol is not changed.)

Several points should be stressed regarding the logic symbol equivalences:

1. The equivalences are valid for gates with any number of inputs.
2. None of the standard symbols have bubbles on their inputs, and all the alternate symbols do.
3. The standard and alternate symbols for each gate represent the same physical circuit: there is no difference in the circuits represented by the two symbols.
4. NAND and NOR gates are inverting gates, and so both the standard and alternate symbols for each will have a bubble on either the input or the output. AND and OR gates are noninverting gates, and so the alternate symbols for each will have bubbles on both inputs and output.

Intrepretation of the two NAND gate symbol

Output goes LOW only when all inputs are HIGH

Logic Symbol Interpretation

Concept of Active Logic Levels:
When an input or output line on a logic circuit symbol has no bubble on it, that line is said to be active-HIGH. When an input or output line does have a bubble on it, that line is said to be active-LOW. The presence or absence of a bubble, then, determines the active-HIGH/activeLOW status of a circuit's inputs and output, and is used to interpret the circuit operation.

CANONICAL AND STANDARD FORMS

Minterms and Maxterms

A binary variable may appear either in its normal form (x) or in its complement form $\left(x^{\prime}\right)$. Now consider two binary variables x and y combined with an AND operation. Since each variable may appear in either form, there are four possible combinations:
$x^{\prime} y^{\prime}, x^{\prime} y, x y^{\prime}$, and $x y$. Each of these four AND terms is called a minterm, or a standard product. In a similar manner, n variables can be combined to form 2^{n} minterms. The 2^{n} different minterms may be determined by a method similar to the one shown in the following table for three variables. The binary numbers from 0 to $2^{\mathrm{n}}-1$ are listed under the n variables. Each min term is obtained from an AND term of the n variables, with each variable being primed if the corresponding bit of the binary number is a 0 and unprimed if a 1 . A symbol for each minterm
is also shown in the table and is of the form m_{j} where j denotes the decimal equivalent of the binary number of the minterm designated.

In a similar fashion, n variables forming an OR term, with each variable being primed or unprimed, provide 2^{n} possible combinations, called maxterms, or standard sums. The eight maxterms for three variables, together with their symbolic designation, are listed in the following table. Any 2^{n} maxterms for n variables may be determined similarly. Each maxterm is obtained from an OR term of the n variables, with each variable being unprimed if the corresponding bit is a 0 and primed if a 1 . Note that each maxterm is the complement of its corresponding minterm, and vice versa.

Minterms and Maxterms for Three Binary Variables

x	y	z	Minterms		Maxterms	
			Term	Designation	Term	Designationnation
0	0	0	$x^{\prime} y^{\prime} z^{\prime}$	m_{0}	$x+y+z$	M0
0	0	1	$x^{\prime} y^{\prime} z$	mi	$\mathrm{x}+\mathrm{y}+\mathrm{z}$,	M_{1}
0	1	0	$\mathrm{x}^{\prime} \mathrm{y} \mathrm{z}{ }^{\prime}$	m_{2}	$x+y^{\prime}+z$	M_{2}
0	1	1	$x^{\prime} y z$	m_{3}	$x+y^{\prime}+z^{\prime}$	M_{3}
1	0	0	$x y^{\prime} z^{\prime}$	m_{4}	$x^{\prime}+y+z$	M_{4}
1	0	1	$x y^{\prime} z$	m_{5}	$x^{\prime}+\mathrm{y}+\mathrm{z}^{\prime}$	M_{5}
1	1	0	$x y z^{\prime}$	m_{6}	$x^{\prime}+y^{\prime}+z$	M_{6}
1	1	1	$x y z$	m_{7}	$x^{\prime}+y^{\prime}+z^{\prime}$	M_{7}

A Boolean function may be expressed algebraically from a given truth table by forming a minterm for each combination of the variables that produces a 1 in the function, and then taking the OR of all those terms. For example, the function f_{l} in the Table is determined by expressing the combinations 001,100 , and 111 as $x^{\prime} y^{\prime} z, x y^{\prime} z^{\prime}$, and $x y z$, respectively. Since each one of these minterms results in $f_{l}=1$, we should have
$\mathrm{f}_{1}=x^{\prime} y^{\prime} z+x y^{\prime} z^{\prime}+x y z=m_{1}+\mathrm{m}_{4}+\mathrm{m}_{7}$
Similarly, it may be easily verified that
$\mathrm{f}_{2}=x^{\prime} y z+x y^{\prime} z+x y z^{l}+x y z=m_{3}+m_{5}+m_{6}+m_{7}$
These examples demonstrate an important property of Boolean algebra: Any Boolean function can be expresses as a sum of minterms (by "sum" is meant the ORing of terms).

Functions of Three Variables

x	y	z	f_{1}	f_{2}
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Now consider the complement of a Boolean function. It may be read from the truth table by forming a minterm for each combination that produces a 0 in the function and then ORing those terms. The complement of f_{1} is read as
$f_{1}{ }^{\prime}=x^{\prime} y^{\prime} \mathbf{z}^{\prime}+x^{\prime} y^{\prime} \mathbf{z}^{\prime}+x^{\prime} y z+x y^{\prime} z^{\prime}+x y z^{\prime}$
If we take the complement of f_{1}^{\prime}, we obtain the function f_{1} :
$f_{1}=(x+y+z)\left(x+y^{1}+z\right)\left(x+y^{\prime}+z^{\prime}\right)\left(x^{\prime}+y+z\right)\left(x^{\prime}+y^{\prime}+z\right)$

$=$ Mo M2 M3 M5 M6

Similarly, it is possible to read the expression for f_{2} from the table:
$f_{2}=(x+y+z)\left(x+y+z^{\prime}\right)\left(x+y^{\prime}+z\right)\left(x^{\prime}+y+z\right)=M_{0} M_{1} \cdot M_{2} M_{4}$
These examples demonstrate a second important property of Boolean algebra: Any Boolean function can be expressed as a product of maxterms (by "product" is meant the ANDing of terms). The procedure for obtaining the product of maxterms directly from the truth table is as follows. Form a maxterm for each combination of the variables that produces a 0 in the function, and then form the AND of all those maxterms. Boolean functions expressed as a sum of minterms or product of maxterms are said to be in canonical form.

Sum of Minterms

Example Express the Boolean function $F=A+B^{\prime} C$ in a sum of minterms. The function has three variables. A, B, and C. The first term A is missing two variables; therefore:

$$
A=A\left(B+B^{\prime}\right)=A B+A B^{\prime}
$$

This is still missing one variable:

$$
\begin{aligned}
\mathrm{A} & =\mathrm{AB}\left(\mathrm{C}+\mathrm{C}^{\prime}\right)+\mathrm{AB}^{\prime}\left(\mathrm{C}+\mathrm{C}^{\prime}\right) \\
& =A B C+\mathrm{ABC}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}
\end{aligned}
$$

The second term $B^{\prime} C$ is missing one variable:

$$
\mathrm{B}^{\prime} \mathrm{C}=\mathrm{B}^{\prime} \mathrm{C}\left(\mathrm{~A}+\mathrm{A}^{\prime}\right)=\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}
$$

Combining all terms, we have

$$
\begin{aligned}
\mathrm{F}=\mathrm{A}+\mathrm{B}^{\prime} \mathrm{C} & \\
& =\mathrm{ABC}+\mathrm{ABC}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C} 4-\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}
\end{aligned}
$$

But $\mathrm{AB}^{\prime} C$ appears twice, and according to theorem $(x+x==x)$, it is possible to remove one of them. Rearranging the minterms in ascending order, we finally obtain

$$
\mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{ABC}^{\prime}+\mathrm{ABC} \quad=m_{1}+\mathrm{m}_{4}+\mathrm{m}_{5}+\mathrm{m}_{6}+\mathrm{m}_{7}
$$

It is sometimes convenient to express the Boolean function, when in its sum of minterms, in the following short notation:

$$
F(\mathrm{~A}, \mathrm{~B}, \mathrm{C})==\Sigma(1,4,5,6,7)
$$

An alternate procedure for deriving the minterms of a Boolean function is to obtain the truth table of the function directly from the algebraic expression and then read the minterms from the truth table. Consider the Boolean function:

$$
\mathrm{F}=\mathrm{A}+\mathrm{B}^{\prime} \mathrm{C}
$$

The truth table shown in the following Table can be derived directly from the algebraic expression.

Truth Table for $F=A+B^{\prime} C$

A	B	C	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Product of Maxterms

Each of the $2^{2 n}$ functions of n binary variables can be also expressed as a product of maxterms. To express the Boolean function as a product of maxterms, it must first be brought into a form of OR terms. This may be done by using the distributive law, $\mathbf{x}+\mathbf{y z}=(. \mathbf{x}+\mathbf{y})(\mathbf{x}+$ z). Then any missing variable e.g. x in each OR term is ORed with $x x^{\prime}$.

Example: Express the Boolean function $F=x y^{\prime}+y z$ in a product of maxterm form.

$$
F=x y^{\prime}+y z=\left(x y^{\prime}+y\right)\left(x y^{\prime}+z\right)=(x+y)\left(y^{\prime}+y\right)(x+z)\left(y^{\prime}+z\right)
$$

$$
\begin{aligned}
& =(x+y)(x+z)\left(y^{\prime}+z\right)=\left(x+y+z z^{\prime}\right)\left(x+y y^{\prime}+z\right)\left(x x^{\prime}+y^{\prime}+z\right) \\
& =(x+y+z)\left(x+y+z^{\prime}\right)(x+y+z)\left(x+y^{\prime}+z\right)\left(x+y^{\prime}+z\right)\left(x^{\prime}+y^{\prime}+z\right) \\
& =(x+y+z)\left(x+y+z^{\prime}\right)\left(x+y^{\prime}+z\right)\left(x^{\prime}+y^{\prime}+z\right) \\
& =M_{0} M_{1} M_{2} M_{6} \\
& =\Pi(0,1,2,6)
\end{aligned}
$$

- We used the distributive law to express in a product of sums.
- We omitted repeated terms.
- We completed each term by ORing the missing variable.
- We can easily use the truth table to reach to a similar result:

x	y	z	$x y^{\prime}$	$y z$	F	
0	0	0	0	0	0	M_{0}
0	0	1	0	0	0	M_{1}
0	1	0	0	0	0	M_{2}
0	1	1	0	1	1	
1	0	0	1	0	1	
1	0	1	1	0	1	
1	1	0	0	0	0	M_{6}
1	1	1	0	1	1	

- In the next chapter you will learn how to use Karnaugh map to reach the same result.

STANDARD FORMS

Another way to express Boolean functions is in standard form. In this configuration, the terms that form the function may contain one, two, or any number of literals. There are two types of standard forms: the sum of products (SOP) and product of sums (POS).

The sum of products is a Boolean expression containing AND terms, called product terms, of one or more literals each. The sum denotes the ORing of these terms. An example of a function expressed in sum of products is $F=x y+z+x y^{\prime} z^{\prime}$. A product of sums is a Boolean expression containing OR terms, called sum terms. Each term may have any number of literals. The product denotes the ANDing of these terms. An example of a function expressed in product of sums is
$F=z(x+y)(x+y+z)$
A Boolean function may be expressed in a nonstandard form. For example, the function
$\mathrm{F}=\mathrm{x}\left(\mathrm{xy}{ }^{\prime}+\mathrm{zy}\right)$
is neither in sum of products nor in product of sums. It can be changed to a standard form by using the distributive law to remove the parentheses:
$\mathrm{F}=x y^{\prime}+x y z^{\prime}$

Questions

Choose the correct answers in the following questions.

1. What function is implemented by the circuit shown

i. $x^{\prime} y^{\prime}+z$
ii. $\quad\left(x^{\prime}+y^{\prime}\right) z$
iii. $x^{\prime} y^{\prime} z$
iv. $x^{\prime}+y^{\prime}+z$
v. NA
2. What function is implemented by the circuit shown

i. $x+y+z$
ii. $x+y+z^{\prime}$
iii. $x^{\prime} y^{\prime} z$
iv. $x^{\prime}+y^{\prime}+z^{\prime}$
v. NA
3. What function is implemented by the circuit shown

i. $x z^{\prime}+y$
ii. $\quad x z+y$
iii. $x^{\prime} z+y^{\prime}$
iv. $x^{\prime} y^{\prime}+y^{\prime} z^{\prime}$
v. $x^{\prime} y^{\prime}+y^{\prime} z$
4. Which gate is the following circuit equivalent to?

i. AND
ii. OR
iii. NAND
iv. NOR
v. None of the above
5. Which of the following functions equals the function: $f=x+y z^{\prime}$?
i. $\quad x\left(y^{\prime}+z\right)$
ii. $\quad x\left(y^{\prime}+z\right)$
iii. $\quad(y+x)\left(z^{\prime}+x\right)\left(y+x^{\prime}\right)\left(x^{\prime}+z^{\prime}\right)$
iv. NA
6. Any possible binary logic function can be implemented using only.
i. AND
ii. OR
iii. NOT
iv. AA (anyone is sufficient)
v. NAND
7. The function in the following circuit is:

i. abcd
ii. $\quad a b+c d$
iii. $\quad(a+b)(c+d)$
iv. $a+b+c+d$
v. $\left(a^{\prime}+b^{\prime}\right)\left(c^{\prime}+d^{\prime}\right)$
8. Given $\mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}+\left(\mathrm{C}^{\prime}+\mathrm{E}\right)\left(\mathrm{D}+\mathrm{F}^{\prime}\right)$, use de Morgan's theorem to find F^{\prime}.
i. $\quad A C E^{\prime}+B C E^{\prime}+D^{\prime} F$
ii. $\quad\left(\mathrm{A}+\mathrm{B}^{\prime}\right)\left(\mathrm{CE}^{\prime} \mathrm{D}^{\prime} \mathrm{F}\right)$
iii. $\quad \mathrm{A}+\mathrm{B}+\mathrm{CE}^{\prime} \mathrm{D}^{\prime} \mathrm{F}$
iv. $\quad A C E '+A D^{\prime} F+B^{\prime} C^{\prime}+B^{\prime} D^{\prime} F$
v. NA
9. The function in the following circuit is:

10. Try Harder Simplify the following:
i. $\quad\left\{\left[(\mathrm{AB})^{\prime} \mathrm{C}\right]^{\prime} \mathrm{D}\right\}^{\prime}$
ii. $\quad\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}\right) \mathrm{C}+\mathrm{D}^{\prime}$
iii. $\quad\left(A+B^{\prime}\right) C^{\prime}+D^{\prime}$
iv. $A^{\prime}+\left(\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right) \mathrm{D}$
v. $A^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}+\mathrm{D}^{\prime}$
vi. $\quad \mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$
11. Using Boolean algebra, simplify the following expressions as much as possible:
i. $\quad\left(\mathrm{A}+\mathrm{B}^{\prime}\right)(\mathrm{A}+\mathrm{C})$
ii. $\mathrm{A}^{\prime} \mathrm{B}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{A}^{\prime} \mathrm{BCD}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \mathrm{D}^{\prime} \mathrm{E}$
iii. $\quad \mathrm{AB}+\overline{\mathrm{ABC}}+\mathrm{A}$
iv. $\mathrm{ABC}[\mathrm{AB}+\overline{\mathrm{C}}(\mathrm{BC}+\mathrm{AC})]$
v. $\quad\left(\mathrm{A}^{\prime}+\mathrm{C}\right)\left(\mathrm{A}^{\prime}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime} \mathrm{D}\right)$
12. Apply DeMorgan's theorems to each expression:
i. $\quad \overline{\mathrm{A}} \overline{\mathrm{B}}(\mathrm{C}+\overline{\mathrm{D}})$
ii. $\overline{\mathrm{AB}(\mathrm{CD}+\mathrm{EF})}$
iii. $\quad(\overline{\overline{\overline{\mathrm{A}}+\mathrm{B}+\mathrm{C}+\mathrm{D}})}(\overline{\mathrm{A} \overline{\mathrm{BCD}}})$
iv. $\overline{(\overline{\overline{\mathrm{A}+\mathrm{B}}})(\overline{\mathrm{C}+\mathrm{D}})}+(\overline{\overline{\mathrm{E}+\mathrm{F}})(\overline{\mathrm{G}+\mathrm{H}})}$
13. Given the following Boolean function:

$$
F=x y^{\prime} z+x^{\prime} y^{\prime} z+w^{\prime} x y+w x^{\prime} y+w x y
$$

i. Obtain the truth table of the function.
ii. Draw the logic diagram using the original Boolean expression.
iii. Simplify the function to a minimum number of literals using Boolean algebra.
iv. Obtain the truth table of the function from the simplified expression and show that5 it is the same as the one in part (i).
v. Draw the logic diagram from the simplified expression and compare the total number of gates with the diagram of part (ii).
14. Express the following functions in a sum of minterms and a product of maxterms?
i. $\quad \mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{B}^{\prime} \mathrm{D}+\mathrm{ACD}+\mathrm{BD}^{\prime}$
ii. $\quad \mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}\right)(\mathrm{BC}+\mathrm{D})$
iii. $\quad \mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{BD}$
15. convert the following to the other canonical form.
i. $\quad \mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Sigma(0,1,5)$
ii. $\quad \mathrm{FF}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Pi(1,2,6,7,8,9,13)$

CHAPTER 4

THE KARNAUGH MAP

The Karnaugh map represents a systematic method for simplifying Boolean expressions and can provide the simplest SOP or POS expression possible. It is similar to a truth table because it represents all the possible values of inputs and outputs. It is an array of cells in which each cell represents a binary value of the inputs. The cells are arranged in a matter so that simplification of a given expression is simply a question of properly grouping adjacent cells.

THE THREE VARIABLE KARNAUGH MAP

m_{0}	$\mathrm{~m}_{1}$	$\mathrm{~m}_{3}$	$\mathrm{~m}_{2}$
$\mathrm{~m}_{4}$	$\mathrm{~m}_{5}$	$\mathrm{~m}_{7}$	$\mathrm{~m}_{6}$

The three variable Karnaugh map contains 8 cells. Each one represents a minterm as shown in figure. The value of a given cell is the value of x at each row combined with the values of $y z$ at each column. Note that the cells are not arranged in order. They are arranged in a way such that there is a difference in only one variable between any two adjacent terms. e.g. xyz is adjacent to $x^{\prime} y z$. The map is considered to wrap in both column and row, i.e. the first column is adjacent to the last one (this applies to rows too in larger maps). The choice of this arrangement of cells is to ensure efficient simplification using the map as will be clear soon.

THE FOUR VARIABLE KARNAUGH MAP

m_{11}	$\mathrm{~m}_{1}$	$\mathrm{~m}_{3}$	$\mathrm{~m}_{2}$
$\mathrm{~m}_{4}$	$\mathrm{~m}_{5}$	$\mathrm{~m}_{7}$	$\mathrm{~m}_{6}$
$\mathrm{~m}_{12}$	$\mathrm{~m}_{13}$	$\mathrm{~m}_{15}$	$\mathrm{~m}_{14}$
$\mathrm{~m}_{6}$	$\mathrm{~m}_{9}$	$\mathrm{~m}_{11}$	$\mathrm{~m}_{10}$

The 4 -variable map is similar to the 3 -variable one, but the number of cell increases to be 16 instead of 8 due to the increase in minterms. The map shown represents the cells of a 4 variable map wxyz where w is the most significant bit and x is the least significant one.

Karnaugh Map Simplification of SOP Expressions

The process that results in an expression containing the fewest possible terms with the fewest possible variables is called minimization. After an SOP expression has been mapped, there are three steps in the process of obtaining a minimum SOP expression: grouping the 1 s , determining the product term for each group, and summing the resulting product terms.

Grouping the 1s You can group 1s on the Karnaugh map according to the following rules by enclosing those adjacent cells containing 1s. The goal is to maximize the size of the groups and to minimize the number of groups.

1. A group must contain either $1,2,4,8$, or 16 cells. In the case of a 3 -variable map, eight cells is the maximum group (16 is max for 8 variables).
2. Each cell in a group must be adjacent to one or more cells in that same group, but all cells in the group do not have to be adjacent to each other.
3. Always include the largest possible number of 1 s in a group in accordance with rule 1 .
4. Each 1 on the map must be included in at least one group. The 1 s already in a group can be included in another group as long as the overlapping groups include noncommon 1s.

Determining the Minimum SOP Expression from the Map

The following rules are applied to find the minimum product terms and the minimum SOP expression:

1. Group the cells that have 1 s . Each group of cells containing 1 s creates one product term composed of all variables that occur in only one form (either uncomplemented or complemented) within the group. Variables that occur both uncomplemented and comp lemented within the group are eliminated. These are called contradictory variables.
2. Determine the minimum product terms for each group.
(a) For a 3-variable map:
(1) A 1-cell group yields a 3-variable product term
(2) A 2-cell group yields a 2 -variable product term
(3) A 4-cell group yields a 1 -variable term
(4) An 8-cell group yields a value of 1 for the expression
(b) For a 4-variable map
(1) A 1-cell group yields a 4-variable product term
(2) A 2-cell group yields a 3-variable product term
(3) A 4-cell group yields a 2 -variable product term
(4) An 8 -cell group yields a 1 -variable term
(5) A 16-cell group yields a value of 1 for the expression
3. When all the minimum product terms are derived from the Karnaugh map, they are summed to form the minimum SOP expression.

EXAMPLE

Simplify the Boolean expression: $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,1,6,7)$
Solution

$$
F=x^{\prime} y^{\prime}+x y
$$

EXAMPLE:

Simplify the Boolean expression: $\quad \mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,2,5,7)$

SOLUTION

EXAMPLE:

Group the 1's in each of the following Karnaugh maps:

$$
F=x^{\prime} y^{\prime} z^{\prime}+x z+y z
$$

$$
F=y^{\prime} z^{\prime}+x^{\prime} y^{\prime}+x y+y z^{\prime}
$$

KARNAUGH MAP PRODUCT OF SUM (POS) SIMPLIFICATION

The minimized Boolean functions derived from the map in all previous examples were expressed in the sum of products form. With a minor modification, the product of sums form can be obtained.

The procedure for obtaining a minimized function in product of sums follows from the basic properties of Boolean functions. The 1's placed in the squares of the map represent the minterms of the function. The minterms not included in the function denote the complement of the function. From this we see that the complement of a function is represented in the map
by the squares not marked by 1 's. If we mark the empty squares by 0 's and combine them into valid adjacent squares, we obtain a simplified expression of the complement of the function, i.e., of F^{\prime}. The complement of F^{\prime} gives us back the function F. Because of Demorgan's theorem, the function so obtained is automatically in the product of sums form.

EXAMPLE

Simplify the following Boolean function in (a) sum of products and (b) product of sums.
$\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,1,2,3,10,11,14)$

.EXAMPLE

Use a Karnaugh map to minimize the following POS expression.
$(\mathrm{x}+\mathrm{y}+\mathrm{z})\left(\mathrm{w}+\mathrm{x}+\mathrm{y}^{\prime}+\mathrm{z}\right)\left(\mathrm{w}^{\prime}+\mathrm{x}+\mathrm{y}+\mathrm{z}^{\prime}\right)\left(\mathrm{w}+\mathrm{x}^{\prime}+\mathrm{y}+\mathrm{z}\right)\left(\mathrm{w}^{\prime}+\mathrm{x}^{\prime}+\mathrm{y}+\mathrm{z}\right)$
solution: The first term must be expanded to get a POS expression:
$(w+x+y+z)\left(w^{\prime}+x+y+z\right)\left(w+x+y^{\prime}+z\right)\left(w^{\prime}+x+y+z^{\prime}\right)\left(w+x^{\prime}+y+z\right)\left(w^{\prime}+x^{\prime}+y+z\right)$
$=\Pi(0,8,2,9,4,12)$
A zero is placed in the map at the location of each maxterm. The zeroes are grouped to get F^{\prime}

$$
\begin{aligned}
& \mathbf{F}^{\prime}=y^{\prime} z^{\prime}+w x^{\prime} y^{\prime}+w^{\prime} x^{\prime} z^{\prime} \\
& F=\left(y^{\prime}+z\right)\left(w^{\prime}+x+y\right)(w+x+z)
\end{aligned}
$$

DON'T CARE CONDITIONS

Sometimes a situation arises in which some input variable combinations are not allowed. For example, recall that in the BCD code, there are six invalid combinations: 1010, 1011, 1100, 1101, 1110, and 1111. Since these unallowed states will never occur in an application involving the BCD code, they can be treated as "don't care" terms with respect to their effect on the output. That is, for these "don't care" terms either a 1 or a 0 may be assigned to the output; it really does not matter since they will never occur.

The "don't care" terms can be used to advantage on the Karnaugh map. The following figure shows that for each "don't care" term, an X is placed in the cell. When grouping the 1 's, Xs can be treated as 1 's to make a larger grouping or as 0 s if they cannot be used to advantage. The larger a group, the simpler the resulting term will be. Be careful do not make a group entirely of x 's.

The following truth table describes a logic function that has a 1 output only when the BCD code for 7,8 , or 9 is present on the inputs. Taking advantage of the "don't cares" and using them as 1 's, the resulting expression for the function is $\mathrm{w}+\mathrm{xyz}$, as indicated. If the "don't cares" are not used as 1 s , the resulting expression is w'xyz + wx'y'. So you can see the advantage of using "don't care" terms to get the simplest expression.

Inputs				Output
x	y	y	w	Y
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0

$\mathbf{F}=\mathrm{w}+\mathrm{xyz}$
EXAMPLE: Simplify the following Boolean function F, where d represents the set of do not care conditions.
$\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,1,2,8,10,11)$
$\mathrm{d}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(4,6,12,13)$

QUESTIONS:

1. Simplify the following Boolean functions using three-variable maps:
(a) $\mathrm{F}(\mathrm{x} . \mathrm{y} . \mathrm{z})=\Sigma(0,1,5,7)$
(b) $\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma(1,2,3,4,7)$
(c) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Sigma(3,5,6,7)$
(d) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\Sigma(0,2,3,4,6)$
2. Simplify the following Boolean expressions using three-variable maps:
(a) $x y+x^{\prime} y^{\prime} z$ + $x^{\prime} y z '$
(b) $x^{\prime} y^{\prime}+y z+x^{\prime} y z^{\prime}$
(c) $\mathrm{A}^{\prime} \mathrm{B}+\mathrm{BC}^{\prime}+\mathrm{B}^{\prime} \mathrm{C}^{\prime}$
3. Simplify the following Boolean functions using four-variable maps:
(a) $\mathrm{F}(\mathrm{A}, B, \mathrm{C}, D)=\Sigma(4,6,7,15)$
(b) $\mathrm{F}(\mathrm{w}, \mathrm{X}, \mathrm{y}, \mathrm{z})=\Sigma(2,3,12,13,14,15)$
(c) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(3,7,11,13,14,15)$
4. Simplify the following Boolean functions using four-variable maps:
(a) $F\{w, x, y, z)=\Sigma(1,4,5,6,12,14,15)$
(b) $\mathrm{F}(\mathrm{A}, B, \mathrm{C}, D)=\Sigma(0, \mathrm{I}, 2,4,5,7.11 .15)$
(c) $F(w, \boldsymbol{x}, y, z)=\Sigma(2,3,10,11,12,13,14,15)$
(d) $\mathrm{F}(\mathrm{A}, B, \mathbf{C}, D)=\Sigma(0,2.4,5,6,7,8,10,13,15)$
5. Simplify the following Boolean expressions using four-variable maps:
(a) $w^{\prime} z+x z+x^{\prime} y+w x^{\prime} z$
(b) $\mathrm{B}^{\prime} \mathrm{D}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{ABC}^{\prime}$
(c) $\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{BCD}+\mathrm{ACD}+\mathrm{A}^{\prime} \mathrm{B}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \mathrm{D}$
(d) $w x y+y z+x y^{\prime}+x^{\prime} y$
6. Find the minterms of the following Boolean expressions by first plotting .each function in a map
(a) $x y+y z+x y^{\prime} z$
(b) $\mathrm{C}^{\prime} \mathrm{D}+\mathrm{ABC}^{\prime}+\mathrm{ABD}{ }^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{D}$
(c) $w x y+x^{\prime} z^{\prime}+w^{\prime} x z$
7. Simplify the following Boolean functions:
(a) $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y} . z)=\Sigma(0,2,4,5,6,7,8,10,13,15)$
(b) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(0,2,3,5,7,8.10,11,14,15)$
(c) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,3,4,5.10,11,12,13,14,15)$
8. Simplify the following Boolean functions using five-variable maps:
(a) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E})=\Sigma(0,1,4,5,16,17.21,25,29)$
(b) $\mathrm{F}(\mathrm{A}, B, \mathrm{C}, \mathrm{D}, \mathrm{E})=\Sigma(0.2,3,4,5,6,7,11,15.16,18,19,23,27,31)$
(c) $\mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{CE}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{B}^{\prime} \mathrm{D}^{\prime} \mathrm{E}^{\prime}+\mathrm{B}^{\prime} \mathrm{CD}^{\prime}+\mathrm{CDE}+\mathrm{BDE}{ }^{\prime}$
9. Simplify the following Boolean functions in product of sums:
(a) $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(0,2,5,6,7.8,10)$
(b) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,3,5,7.13,15)$
(c) $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\Sigma(2.3,6,7)$
(d) $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, D)=\Pi(0,1,2,3,4,10,11)$
10. Use a Karnaugh map to simplify each expression to minimum POS form:
(a) $(\mathrm{A}+\mathrm{B}+\mathrm{C})\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}\right)$
(b) $\mathrm{A}\left(\mathrm{B}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{C}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}^{\prime}\right)$
(c) $\left(\mathrm{X}+\mathrm{Y}^{\prime}\right)\left(\mathrm{W}+\mathrm{Z}^{\prime}\right)\left(\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}+\mathrm{Z}^{\prime}\right)(\mathrm{W}+\mathrm{X}+\mathrm{Y}+\mathrm{Z})$

CHAPTER 6

Sequential Logic and Flip-Flops

INTRODUCTION

The logic circuits you have previously studied have considered mainly of logic gates (AND, OR, NAND, NOR, INVERT) and combinational logic.

Starting in this chapter, we will deal with data storage circuits that will latch onto (remember) a digital state (1 or 0). This new type of digital circuits is called sequential circuit, because it is controlled by and is used in controlling other circuitry is a certain sequence according to a control clock.

SEQUENTIAL CIRCUITS AND FEEDBACK:

Fig(1): a: Sequential circuit.
b: Combinational circuit.
Figure (1) shows a diagram of a sequential circuit and of a combinational one. It is obvious that the main difference between both circuits is the feed back path between the output and the input, present only in the sequential circuit. This beed back path makes the output of the network depend on both the present input plus the previous input. This gives the network the chance to have a memory about its previous output. While the output of the combinational circuit depends only on the combination of inputs.

EXAMPLE 1:

Which of the two circuits in Fig (2) is sequential, and which is combinational? Give reasons to your answer.

Solution:

The circuit in Fig (a) is combinational and its function is: OUT = A B C. It is obvious that the output depends only on the combination of inputs and it does not depend on the previous inputs. The circuit in Fig (b) is sequential and its function is: $\operatorname{OUT}(\mathrm{t}+1)=\mathrm{A} \mathrm{B} \mathrm{OUT}(\mathrm{t}) \mathrm{C}$. It is obvious that the output depends on both the current inputs and on the previous output. So, it is a sequential circuit.

SET- RESET (S-R) LATCHES :

Cross- NOR S-R latch (active high)

The Set-Reset (S-R) latch is a data storage device. It can be constructed either by cross- coupling two NAND gates or two NOR gates. Fig (3) Shows an S-R latch with two NOR gates.

Fig(3): NOR S-R latch.

To analyze this circuit, start with the truth table of the NOR gate.

A	B	C
0	0	1
0	1	0
1	0	0
1	1	0

Table[1]

It is obvious that if any of the inputs of the NOR gate is high (logic 1), the output is low (logic 0). So, we always start the analysis with the logic 1 input.
i. If S $=1$
1, $\mathrm{R}=$
$=0$ (set condition).

- $S=1$ will make the output of the lower NOR gate $\overline{\mathrm{Q}}=0$.
- $\overline{\mathrm{Q}}$ is fed back to the upper NOR gate. $\mathrm{R}=0$ and $\overline{\mathrm{Q}}=0$ will make the output of the upper NOR gate $\mathrm{Q}=1$.
- Q is also fed back to the lower NOR. $\mathrm{S}=1$ and $\mathrm{Q}=1$ will make the output of the lower NOR stable at $0(\overline{\mathrm{Q}}=0)$. Therefore, the circuit will latch in the set situation.
ii. if $S=0, R=1$
(Reset condition).
- $\mathrm{R}=1$ will make the output of the upper NOR gate $\mathrm{Q}=0$.
- Q is fed back to the lower NOR gate. $S=0$ and $Q=0$ will make the output of the lower NOR gate $\overline{\mathrm{Q}}=1$.
- $\overline{\mathrm{Q}}$ is also fed back to the upper NOR gate. $\mathrm{R}=1$ and $\overline{\mathrm{Q}}=1$ will make the output of the upper NOR stable at $0(\mathrm{Q}=0)$. Therefore, the circuit will latch in the reset situation.
iii. If $S=0, R=0$
(No change condition)
- If the circuit is previously set $\mathrm{SR}=(1,0)$, and the 1 is removed from the S input; i.e.; SR $=00$; then the circuit should remember that it is set $(\mathrm{Q}=1, \overline{\mathrm{Q}}=0) .(\operatorname{Fig}(4 . \mathrm{a}))$
- $\mathrm{Q}=1$ is fedback to the lower NOR. $\mathrm{S}=0$ and $\mathrm{Q}=1$ will make the output of the lower

(a): No-Change when the circuit was previously set.

(b): No-Change when the circuit was previously reset.

Fig(4): No-Change condition in S-R latch.
NOR $\overline{\mathrm{Q}}=0$.

- $\overline{\mathrm{Q}}=0$ is fedback to the upper NOR gate. $\mathrm{R}=0$ and $\overline{\mathrm{Q}}=0$ will make the output of the upper NOR gate $\mathrm{Q}=1$.
- Therefore, the circuit holds at the set position even after removing 1 from S .
- If the circuit is previously reset $\mathrm{SR}=01$, and the 1 is removed from the R input; i.e. ; $\mathrm{SR}=$ 00 ; then the circuit should remember that it is $\operatorname{reset}(\mathrm{Q}=0, \overline{\mathrm{Q}}=1)$ as shown in Fig (4.b).
iv.

$$
\text { If } \mathrm{S}=1, \mathrm{R}=1(\text { Forbidden condition })
$$

* When both S and R inputs are high the output of both NORs will be Zero; $\mathrm{Q}=0, \overline{\mathrm{Q}}=0$ as shown in Fig (5) .

Fig(5): Forbidden Condition in S-R Latch.

- This condition is forbidden (not allowed or, race) because it makes both outputs equal which is undesired situation. Another problem encountered when $\mathrm{SR}=11$, is that if we return to the no-change condition $\mathrm{SR}=00$ after the forbidden condition $\mathrm{SR}=11$ we will get unpredictable result. This is known as the race situation.
- If we go from $\mathrm{SR}=11$ to $\mathrm{SR}=00$, then we may have two cases.

Case 1: R changes first: $\mathrm{SR}=10$ then $\mathrm{SR}=00$

Case 2: S changes first: $\mathrm{SR}=01$ then $\mathrm{SR}=00$

Case 1			
	S	R	Q
t_{0}		1	0
t_{1}		0	1
t_{2}		0	1

Case 2			
	S	R	Q
t_{0}	1	1	0
t_{1}	0	1	0
t_{2}	0	0	0

Table[2]

Table[3]

- It is obvious that the output of the circuit depends on which input reaches 0 first. That is why we call it the race condition.
- The function table of the NOR S-R latch is:

R	S	Q	$\overline{\mathrm{Q}}$	Comments
0	0	Q	$\overline{\mathrm{Q}}$	No change (hold) condition
0	1	1	0	Set.
1	0	0	1	reset
1	1	0	0	Forbidden, Not used , race.

Table[4]

Cross- NAND S-R latch . (active low).

An S-R latch can be made from cross - NAND gates (Fig. 6). It has similar function to the NOR latch, but the inputs are active low. It is some times called $\overline{\mathrm{S}}-\overline{\mathrm{R}}$ latch.

The truth table of NAND gate .

A	B	C
0	0	1
0	1	1
1	0	1
1	1	0

Table[5]

- The key in analyzing this circuit is that if any of the inputs at the NAND gate is 0 , then the output is 1 regardless of the other input. So, we start the analysis by active low (0) input.
- The key in analyzing the previous circuit is that if any of the inputs al the NAND gate is 0 , then the output is 1 regardless of the other input. So, we start the analysis by active low (0) input.
- Analyze the previous circuit in a similar way to the NOR latch, you will reach to the following . Function table.

Functions table of the NAND latch .

\mathbf{R}	\mathbf{S}	\mathbf{Q}	$\overline{\mathrm{Q}}$	Comments
0	0	1	1	Forbidden, not uset, race
0	1	0	1	Reset
1	0	1	0	Set
1	1	Q	$\overline{\mathrm{Q}}$	Nochange (hold) condition

(a): SET condition.

(c): no-change after SET.

(b): RESET condition.

(d): no-change after RESET.

(e): forbidden or race condition.

Fig(6): Cross-Coupled NAND Latch.

Table[6]

QUESTION:

If we put an inverter at both S and R inputs as shown in Fig (7), analyze the resulting circuit and determine its function table.

Fig(7): S R latch using NAND gates and inverters.

The symbol used for an $S-R$ latch is shown in Fig (8)

Fig(8): Symbol for an S-R latch.

EXAMPLE 2:

What is the function table for the feedback circuit shown in Fig. (9)? Can it work as a flip-flop or not? Give reasons.

Fig (9)

Solution:

$$
\begin{aligned}
1-\mathrm{X} & =0, \mathrm{Y}=0 \quad \text { (} \mathrm{X} \text { is active low. } \mathrm{Y} \text { is active high }) \\
\mathrm{X} & =0 \rightarrow \mathrm{Q}=1 \\
\mathrm{Q} & =1, \mathrm{Y}=0 \rightarrow \mathrm{P}=0 \\
2-\mathrm{X} & =0, \mathrm{Y}=1 \\
\mathrm{X} & =0 \rightarrow \mathrm{Q}=1
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Y}=1 \rightarrow \mathrm{P}=0 \\
& 3-\mathrm{X}=1, \mathrm{Y}=1 \\
& \mathrm{Y}=1 \rightarrow \mathrm{P}=0 \\
& \mathrm{P}=0, \mathrm{X}=1 \rightarrow \mathrm{Q}=1 \\
& 4-\mathrm{X}=1, \mathrm{Y}=0 \\
& \text { If: } \mathrm{Q}(\mathrm{t})=1, \mathrm{Y}=0 \rightarrow \mathrm{P}(\mathrm{t}+1)=0 \\
& \quad \mathrm{P}(\mathrm{t}+1)=0, \mathrm{X}=1 \rightarrow \mathrm{Q}(\mathrm{t}+1)=1
\end{aligned}
$$

This circuit can not work as a flip-flop because it has only one stable state $(\mathrm{P}=0$ and $\mathrm{Q}=1)$. Its function table Is shown in below:

X	Y	Q	P
0	0	1	0
0	1	1	0
1	0	1	0
1	1	1	0

Table[7]

EXAMPLE3:

In the previous circuit what will happen if it initially started with $\mathrm{Q}=0$?

Solution:

The only change will happen in the fourth case $(\mathrm{X}=1$ and $\mathrm{Y}=0$) which represents the nochange condition. If $\mathrm{Q}(\mathrm{t})=0$ and $\mathrm{Y}=0$, then $\mathrm{P}(\mathrm{t}+1)=1$. If $\mathrm{P}(\mathrm{t}+1)=1$ and $\mathrm{X}=1$ then Q $(t+1)=0$. So, the circuit will remain in this state $(\mathrm{QP}=01)$ until any of its inputs (X or Y) changes then it goes to the state ($\mathrm{Q} P=10$), and remains in this state.

S-R Timing Analysis:

By performing a timing analysis on the $\mathrm{S}-\mathrm{R}$ flip-flop, we can see why it is called transparent and also observe the latching phenomenon .

EXAMPLE4:

If the S and R waveforms shown in Fig (10) are applied to the inputs of the NAND latch, determine the waveform that will be applied on the Q output. Assume that Q is initially low.

Fig(10)

Solution: See Fig (10).

\mathbf{R}	\mathbf{S}	$\mathbf{Q}(\mathbf{t}+\mathbf{1})$	
$\mathbf{0}$	$\mathbf{0}$	$*$	forbidden
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	reset
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	set
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{Q}(\mathbf{t})$	No-change

Table [8]

The function table of the S-R NOR latch (active low) is shown in the previous table. Initially $\mathrm{Q}=0$, and $\mathrm{S}=\mathrm{R}=1$ (no change). At time $1, \mathrm{~S}$ changes to 0 and R remains 1 . The latch sets and $\mathrm{Q}=1$. At time $2 \mathrm{~S}=1$ and R changes to 0 (reset) and Q changes to 0 . At time 3 both S and R become 1 (no change), and Q is still 1 . This applies to all the points as shown in figure (10).

So the latch sets at points where S changes from 1 to 0 and $\mathrm{R}=1$. It resets at points where R changes from 1 to 0 and $S=1$. At points where $S=R=1, Q$ does not change.

EXAMPLE5:

If the S and R waveforms shown in Fig (11.a) are applied to the inputs of the NOR latch, determine the waveform that will be applied on the Q output. Assume that Q is initially low.

Fig(11)

Solution: See Fig (11.b).

The function table of the S-R NOR latch (active high) is shown in Table (2). Initially $\mathrm{Q}=0$, and $\mathrm{S}=\mathrm{R}=0$ (no change). At time $1, \mathrm{~S}$ changes to 1 and R remains 0 . The latch sets and $\mathrm{Q}=$ 1. At time $2, S=0$ and R changes to 1 (reset) and Q changes to 0 . At time $3, S$ changes to 1 and R remains 0 . The latch sets and $\mathrm{Q}=1$. This applies to all the points as shown in figure (11).

So the latch sets at points where S changes from 0 to 1 and $\mathrm{R}=0$. It resets at points where R changes from 0 to 1 and $S=0$. At points where $S=R=0, Q$ does not change.

R	S	$\mathrm{Q}(\mathrm{t}+1)$	
0	0	$\mathrm{Q}(\mathrm{t})$	No-change
0	1	1	set
1	0	0	reset
1	1	$*$	forbidden

Table[9]

Switch Debouncing Circuits :

- Switch bounce occurs as a mechanical switch lever snaps to a new position. After reaching the new contact point, the pole bounces on a micrometer scale of millisecond duration (Fig (12)). Bounce can cause problems in circuits that are expecting an input to stabilize without oscillating, such as counters.
- As shown in Fig (12), if you flip a mechanical SPDT (single Pole double throw) switch to a new position, it will bounce a few times before settling. We do not want a counter circuit, for exople, to count these bounces.
- The $\mathrm{S}-\mathrm{R}$ debouncer circuit is shown in Fig (13).
- When the switch is neither connected to the lower pin nor to the upper pin, both $\overline{\mathrm{S}}$ and $\overline{\mathrm{R}}$

Fig(12): Bouncing Switch.
equal $+5 \mathrm{v}($ Logic 1$)$ and the latch is in the no change state.

- When the switch has the first contact to the upper pin, $\overline{\mathrm{S}}=0, \overline{\mathrm{R}}=1$ and the latch is set . If the switch bounces it will not be connected to either pins and the no change state makes it stay at the set condition ($\mathrm{Q}=1, \overline{\mathrm{Q}}=0$).

Fig(13): Debouncing with $S^{\prime} R^{\prime}$ latch.

- Similarly, when the switch has the first contact to the lower pin, $\overline{\mathrm{S}}=1, \overline{\mathrm{R}}=0$ and the latch is reset $(\mathrm{Q}=0, \overline{\mathrm{Q}}=1)$. If the switch bounces, it will not be connected to either pins and the no change condition makes $\mathrm{Q}=0, \overline{\mathrm{Q}}=1$ as before

Fig(13): Debouncing with $S^{\prime} R^{\prime}$ latch.

Switch Condition	$\overline{\mathrm{R}}$	$\overline{\mathrm{S}}$	Q	$\overline{\mathrm{Q}}$
Impossible	0	0	$*$	$*$
Upper pin contacted	1	0	1	0
Lower pin contacted	0	1	0	1
Neither pin contacted	1	1	No change	

Table[10]

EXAMPLE 6:

Show how you can construct a switch debouncing circuit using a NOR lath?

Solution:

As a single pole double throw (SPDT) switch makes a new contact, it bounces a few times before settling. We do not want a count circuit, for example, to count these bounces. A latch can be used to eliminate this problem by forcing the lath to be in the no-change condition
when either pin is connected. The function table of the latch, which is shown in fig (14), is shown in Table [XI].

Switch condition	S	R	Q
Upper pin connected	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$
Lower pin connected	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
Neither connected	$\mathbf{0}$	$\mathbf{0}$	No-change
Impossible	$\mathbf{1}$	$\mathbf{1}$	$*$

Table[11]
In the timing diagram in Fig (14-b), at point A the switch is thrown from position 1 to position 2. The output changes from logic 0 to 1 . If the switch bounces around position 2 , the latch will be in the no-change condition and the output stays at logic 1 . At point B in the timing diagram, the switch is thrown from position 2 to position 1. The output changes from logic 1 to 0 . If the switch bounces around position 1 , the latch will be in the no-change condition and the output stays at logic 0 . Therefore, the switch is debounced at both positions.

(b)

Fig(14)

STATE:

State of a FF or latch is one of two possible stalle conditions for the output. The set state where $\mathrm{Q}=1, \overline{\mathrm{Q}}=0$. The reset state where $\mathrm{Q}=0, \overline{\mathrm{Q}}=1$.

Clocked SR latches (flip - flops):

Simple gate circuits, combinational logic and transparent S-R flip-flops are called asynchronous (not synchronous) because the output responds immediately to input changes. Synchronous circuits operate sequentially , in step, with a control input. To make an S-R flip flop synchronous, we add a gated input to enable and disable the S and R inputs. Fig (15) shows a gated $\mathrm{S}-\mathrm{R}$ flip-flop using a cross NOR $\mathrm{S}-\mathrm{R}$ latch .

Fig(15): Gated S-R flip-flop using cross coupled NOR gates.

The operation of the circuit is as follows :

- When the gate $=0$, both. $\mathrm{R}_{\mathrm{i}}=0$. Therefore the latch is in the no. change (hold) condition .
- When the gate $=1, R_{i}=R$ and $S_{i}=S$. The latch behaves as a normal S-R latch .
- The latch is only transparent when the gate is active $($ gate $=1)$, otherwise it is in the hold state and the input (S, R) has no effect on it .
- The clocked (gated) latch can also be implemented using cross - NAND gates as shown in fig (16) .

Fig(16): Gated S-R flip-flop using NAND gates.

Try to analyze this circuit yourself. The function table of both circuits is as follows.
Table[12]: Function table of gated flip - flop

S	R	Gate	Q	$\overline{\mathrm{Q}}$	Comments
X	X	0	Q	$\overline{\mathrm{Q}}$	The gate is open and the flip flop is in the no change.

EXAMPLE 7:

Determine the Q output waveform if the inputs shown in Fig (17-a) are applied to a clocked (gated) S-R latch that is initially RESET.

Solution: The timing diagram of both inputs and the output are shown in Fig (17). The latch changes its state only if the clock is high. At points 1 and $3, \mathrm{~S}=1, \mathrm{R}=0$ and clock $=1$, so the latch sets. At points 2 and $4, S=0, R=1$ and clock $=1$, so the lath resets. At all other points it does not change its state. The second pulse of S has no effect, because it starts and ends while the clock is low.

EXAMPLE 8:

Determine the Q output waveform if the inputs shown in Fig (18) are applied to a clocked (gated) S-R latch that is initially RESET.

GATED D latch :

Another type of flip-flop is the D flip - flop (Data flip - flop). It can be formed from the gated $\mathrm{S}-\mathrm{R}$ latch by the addition of an inverter. This enables just a single input (D) to both Set and Reset the latch (Fig (19)) .

- When $\mathrm{D}=0, \mathrm{~S}=0$ and $\mathrm{R}=1$, the latch is in the reset state and $\mathrm{Q}=0, \overline{\mathrm{Q}}=1$.
- When $\mathrm{D}=1, \mathrm{~S}=1$ and $\mathrm{R}=0$, the latch is in the set state and $\mathrm{Q}=1, \overline{\mathrm{Q}}=0$.

EXAMPLE 9:

Sketch the output waveform at Q for the inputs at D and G of the gated D latch in Fig (20).

(a)
(b)

Fig(20)

Integrated - circuit D latch (7475) :

The 7475 is an example of an integrated - circuit D. latch (also called a bistable latch). It contairs four transparent (not clocked) D latches. Its logic symbol and pin configuration are shown in figure (21). Latches 0 and 1 share a common enable (E_{0-1}) and latches 2 and 4 share a common enable (E_{2-3}). The enables act just like the G-input in the gated D- latch.

From the function table, we can see that the Q output will follow D (transparent) as long as the enable line (E) is HIGH (called active - HIGH enable). When E goes low, the Q output will become latched to the value that D was just before the HIGH - to - low transition of E .

(a)

(b)

Fig(21): The 7475 quad bistable D latch.

Function Table For 7475

Operating Mode	Inputs		Out puts	
	E	D	$\mathrm{Q}(\mathrm{t}+1)$	$\overline{\mathrm{Q}}(\mathrm{t}+1)$
Data Enabled	1	0	0	1
Data Enabled	1	1	1	0
Data Latched	0	X	$\mathrm{Q}(\mathrm{t})$	$\overline{\mathrm{Q}}(\mathrm{t})$

Table[13]

EXAMPLE 10:

Construct a D flip-flop using NOR and AND gates.

Solution:

Fig(22)

J-K FLIP - FLOPS :

- The J.K flip - flop ($\operatorname{Fig}(23 \mathrm{a})$) is similar to the S-R flip - flop with Q fed back to be ANDed with R and $\overline{\mathrm{Q}}$ fed back to be ANDed with S . This forces the Forbidden state $\mathrm{SR}=11$ to produce a fourth allowed state called "toggle".
i. $\mathrm{J}=0, \mathrm{~K}=0 \quad$ (no change)
$\mathrm{J}=0$ makes $\mathrm{S}=0$
and $\mathrm{K}=0$ makes $\mathrm{R}=0$.

So , this is the no-change (hold) condition

ii. If	J				and
K	$=$				1
					(reset)
$\mathrm{J}=0$					makes
					$\mathrm{S}=0$
$\mathrm{K}=1$ makes	$\mathrm{R}=\mathrm{Q}(\mathrm{t})$. Then we may have one of the following two cases:				
Case a: if $\mathrm{Q}(\mathrm{t})$	$=$	0	(initially)	then
R					0

So, $\mathrm{SR}=00$ (no change) and $\mathrm{Q}(\mathrm{t}+1$) will stay at 0 .

Case b: if $\mathrm{Q}(\mathrm{t})$	$=\quad$ (initially	$=$) then
R		$=$	1

So, $\mathrm{SR}=01$ (reset) and $\mathrm{Q}(\mathrm{t}+1)$ will be reset to $\mathrm{Q}(\mathrm{t}+1)=0$.

So in both cases (a) and (b), Q will be reset to 0 .

Fig(23): A J-K flip-floip a) from RS FF. b) with NOR gates c) with NAND gates d)logic symbol.

iii. If	J	1	and
K			0
			(set)

$$
\begin{array}{lr}
\mathrm{J}=1 & \text { makes } \\
\mathrm{S}=\overline{\mathrm{Q}}(\mathrm{t})
\end{array}
$$

$K=0$
makes

$$
\mathrm{R}=0 \text {. Then we may have one of the following two cases: }
$$

| Case a: if $\mathrm{Q}(\mathrm{t}) \quad 0 \quad$ (initially | $=$ | then | |
| :---: | :---: | :---: | :---: | ---: |
| S | | $=$ | 1 |

$$
\text { So, } \mathrm{SR}=10(\mathrm{set}) \text { and } \mathrm{Q}(\mathrm{t}+1) \text { will be set to } \mathrm{Q}(\mathrm{t}+1)=1 \text {. }
$$

| Case b: if $\mathrm{Q}(\mathrm{t})$ | $=\quad$ (initially) | |
| :--- | :--- | :--- | :--- |
| S | $=$ | then |
| | | |

So, $\mathrm{SR}=00$ (reset) and $\mathrm{Q}(\mathrm{t}+1$) will remain at 1 .

So in both cases (a) and (b), Q will be set to 1 .

Then we may have one of the following two cases:

Case a: if $\mathrm{Q}(\mathrm{t})$	$=$	0	(initially)	then	
S	$=$	1	and	R	$=$	0

$$
\text { So, } \mathrm{Q}(\mathrm{t}+1) \text { will be set to } 1
$$

Case b: if $\mathrm{Q}(\mathrm{t}) \quad=\quad 1 \quad$ (initially) then $\mathrm{S}=0$ and $\mathrm{R}=1$ (reset) and $\mathrm{Q}(\mathrm{t}+1)$ will be reset to 0 .

So, the next state will be the toggle (complement) of the present state.

- The function table of the J. K flip - flop is

J	K	Gate	$\mathrm{Q}(\mathrm{t}+1)$	$\overline{\mathrm{Q}}(\mathrm{t}+1)$	Comments
X	X	0	$\mathrm{Q}(\mathrm{t})$	$\overline{\mathrm{Q}}(\mathrm{t})$	No-change (gate is open)
0	0	1	$\mathrm{Q}(\mathrm{t})$	$\overline{\mathrm{Q}}(\mathrm{t})$	No-change
0	1	1	0	1	Reset
1	0	1	1	0	Set
1	1	1	$\overline{\mathrm{Q}}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t})$	Toggle (complement)

Table[14]

T. (TOGGLE) FLIP-FLOP

- Another type of flip- flop is the T- flip flop. It can be obtained be connecting both J and K together. As shown in figure (24.)

T

Fig(24): T flip-flop.

The analysis of this circuit is very simple .

i- If \quad T $=0$, then $\mathrm{JK}=00$ and the flip-flop is in the no-change state
ii- \quad If $\mathrm{T}=1$, then $\mathrm{JK}=11$ and the flip - flop is in the toggle state.

The function table of the flip-flop is :

T	Gate	$\mathrm{Q}(\mathrm{t}+1)$	$\overline{\mathrm{Q}}(\mathrm{t}+1)$	Comments

X	0	$\mathrm{Q}(\mathrm{t})$	$\overline{\mathrm{Q}}(\mathrm{t})$	No-change (gate is open)
0	1	$\mathrm{Q}(\mathrm{t})$	$\overline{\mathrm{Q}}(\mathrm{t})$	No-change
1	1	$\overline{\mathrm{Q}}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t})$	Toggle (complement)

Table[15]

MASTER - SLAVE FLIP-FLOPS :

* In the four types of flip-flops (S-R, D, J-K, T) discussed so far the flip-flop is either transparent i-e not gated; we referred to transparent flip-flops as latches; or the flip-flop is gated. In gated flip=flops, it is only active when the gate is closed $(\mathrm{G}=1)$. This corresponds to a circuit that is only active at the HIGH level of the clock .
* In many applications we want the FF to be active at the edge of the clock rather than at the level. (Fig (25))

Fig(25): Clock edge and level.

The FF active at the clock edge can be achieved by either :

1- edge - triggered FFs
2- Master - slave FFs .

The block diagram of a J-K Master- slave FF is shown in Fig (26).

Fig(26): Master-Slave J-K flip-flop.

- The master- slave FF can be constructed from any typr of FF by adding a clocked RS FF with an inverted clock to form the slave.
- It consists of two FFS; The $1^{\text {st }}$ is called "master" and is clocked at the HIGH level of the clock. The $2^{\text {nd }}$ is called " slave" and is clocked at the low level of the clock .
- The operation of the master-slave flip-flop (Fig (27)) is as follows :

1. While the clock is high , the master is active and the slave is inactive .
2. While the clock is low, the master is inactive and the slave is active.

As a result data are entered into the flip-flop on the leading edge of the clock pulse, but the output does not reflect the input state until the trailing edge.

- If a J-K FF is sensitive to the level of the clock (Fig 28), and J K = 11, the output of the FF will toggle from $0-1-0-1$ until the clock returns to the low level. It is not exactly
whether the be 0 or 1 clock clock returns J This known as condition. master-slave on the -ve to eliminate

EDGE -

known
out put will when the to level 0 . condition is the race Using a
that triggers edge ensures this problem.

Fig(28):Race problem in level-clocked J-K flip-flop.

TRIGGERED J K FFS:

- With edge triggering, the flip-flop accepts data only on the J and k inputs that are present at the active clock edge (either +ve (leading) or -ve (trailing) edge). This gives the engineer the ability to accept input data on J and K at a precise instant in time. The logic symbols for edge - triggered flip-flop use a small triangle at the clock input to signify that it is an edge-triggered device ($\operatorname{Fig}(\mathrm{a}, \mathrm{b})$).

Symbols for edge triggered J - K flip_flop .
(a) -ve edge triggered
(b) Tve edge triggered

EXAMPLE 11:

- Draw the logic diagram of a master-slave J-K flip-flop using:
a- NAND gates $\quad b-$ NOR AND gates.

Solution:

Function table:

\mathbf{J}	\mathbf{K}	Clock	$\mathbf{Q (t + 1)}$	function
$\mathbf{0}$	$\mathbf{0}$	\downarrow	$\mathbf{Q (t)}$	No-change
$\mathbf{0}$	$\mathbf{1}$	\downarrow	$\mathbf{0}$	reset
$\mathbf{1}$	$\mathbf{0}$	\downarrow	$\mathbf{1}$	set
$\mathbf{1}$	$\mathbf{1}$	\downarrow	$\mathbf{Q}(\mathbf{t}+\mathbf{1})$	toggle

Table[16]

EXAMPLE 12:

Determine the Q output waveform if the inputs shown in Fig (30) are applied to a clocked S-R flip flop that is initially RESET. The flip-flop is triggered at the positive edge.

Solution: The clock and the S-R inputs are given and the resulting Q output is shown. We take a line at each positive edge of the clock and determine the value of S and R . So, Q can be set, reset or no-change as shown.

Fig (30)

EXAMPLE 13:

- Determine the Q output waveform if the inputs shown in Fig (31) are applied to a clocked S-

R flip-flop that is initially RESET. The flip-flop is triggered at the positive edge.

EXAMPLE 14:

- Determine the Q output waveform if the inputs shown in Fig (32) are applied to a clocked S-

R flip-flop that is initially RESET. The flip-flop is triggered at the positive edge.

Fig(32)

EXAMPLE 15:

Draw the logic diagram of a master-slave S-R flip-flop using:
a- NAND gates b- NOR AND gates.

Solution:

Fig(33)

Function table:

\mathbf{S}	\mathbf{R}	Clock	$\mathbf{Q (t + 1)}$	function
$\mathbf{0}$	$\mathbf{0}$	\downarrow	$\mathbf{Q (t)}$	No-change
$\mathbf{0}$	$\mathbf{1}$	\downarrow	$\mathbf{0}$	reset
$\mathbf{1}$	$\mathbf{0}$	\downarrow	$\mathbf{1}$	set
$\mathbf{1}$	$\mathbf{1}$	\downarrow	$*$	forbidden

Table[17]

EXAMPLE 16:

Draw the logic diagram of a master-slave T flip-flop using:
$a-$ NAND gates $\quad b-N O R$ AND gates.

Solution:

	Fig(34-b)		
\mathbf{T}	Clock	$\mathbf{Q (t + \mathbf { 1 })}$	function
$\mathbf{0}$	\downarrow	$\mathbf{Q (t)}$	No-change
$\mathbf{1}$	\downarrow	$\mathbf{Q} \mathbf{(t + 1)}$	toggle

Table[18]

MASTER-SLAVE FLIP-FLOP AND 1S CATCHING:

Fig(35): Master-slave S-R flip-flop.

- The timing diagram in figure (36) illustrates the 1 s catching phenomena in masterslave SR flip-flops shown on figure (35).
- At time (a), the SET (S) input goes high and returns back to low at (b). This pulse occurs before the negative edge of the clock and should not affect the output. But, that is not what really happens because the master output Qm_{m} will go HIGH at point a (the master catches this unwanted pulse). At point $(b), S$ returns to LOW $(S R=00)$, the flipflop holds to $\mathrm{Q}_{\mathrm{M}}=1$. At the negative edge of the clock, (c), the master output is still HIGH, which is the input to the slave. So, at point (d) the output of the slave goes HIGH too.
- Briefly: The master catches the HIGH pulse while the clock is inactive, and fed it to the slave at the active (-ve) edge of the clock.
- The problem is repeated for the HIGH (level 1) pulse (starting at point e) at the RESET input. The master catches this reset pulse and causes the slave to RESET at point (f), even though the reset pulse is not present at point (f).

Fig(36): 1s-catching in Master-Slave S-R flip-flop.

EXAMPLE 17:

A J-K master - slave level sensitive flip-flop, has the J, K and clock waveforms shown on fig (37). Draw what you expect the out waveform to look like. The second J pulse is an example of 1 s catching. Why do you think it has that name? What J or K puls would produce 0 s - catching ? The out put was originally low.

Fig(37)

Solution :

The timing diagram of both $\mathrm{Qm}_{\mathrm{m}} \& \mathrm{Qs}$ are shown on figure(37). It is obvious that pulse (2) on the K input is an example of 0 s - catching - pulse (3) on the J in put is an example of 1 s catching.

- Analyze he circuit yourself :

DIRECT (ASYNCHRONOUS) INPUTS :

For the clocked flip-flops just discussed, the S-R, D, J-K and T inputs are called synchronous inputs because data on these inputs are transferred to the flip-flop's output only on the triggering edge of the clock pulse; that is, the data are transferred synchronously with the clock.

Most IC flip-flops also have asynchronous inputs. These are inputs that affect the state of the flip-flop independent of the clock .

They are normally labeled preset (PRE) and clear (CLR), or direct set (S_{D}) and direct reset $\left(R_{D}\right)$ by some manufactures.

An active level on the preset input will SET the flip-flop, and an active level on the clear input will RESET it (fig (38)).

$\overline{\text { PRE }}$	$\overline{\mathrm{CLR}}$	Q
0	0	HI, but unstable
0	1	1
1	0	0
1	1	Clocked operation

Table[19]

- The direct inputs are active low, they must both be kept HIGH for synchronous operation.
- FIG (39) shows the logic diagram for an edge triggered J-K flip-flop with active- low $\overline{\operatorname{PRE}}$ and $\overline{\mathrm{CLR}}$ inputs.

Fig(39): Logic diagram for a basic J-K flip-flop with active LOW preset and clear.

- This figures illustrates basically how these inputs work. They are connected so that they override the effect of the synchronous inputs, (J, K) and the clock.

EXAMPLE 18:

For the + ve edge-triggered J-K flip-flop with preset and clear inputs in figure(40). determine the Q output for the inputs shown in the timing diagram (fig(41)) if Q is initially low.

FIG(40)

Solution :

- During pulses 1,2 and 3 , the preset ($\overline{\mathrm{PRE}})$ is low, keeping the FF SET regardless of the synchronous J K inputs .
- Starting with the + ve edge of pulse 4 , the FF toggles this continues for pulses 5 and 6 .
- During pulse 8, the clear is low, keeping the FF RESET regardless of the synchronous J K inputs.

Question :If you inter change the $\overline{\text { PRE }}$ and $\overline{\mathrm{CLR}}$ waveforms; what will the Q output look like?

FLIP- FLOP OPERATING CHARACTERISTICS

Propagation Delay times:

- A propagation delay time is the interval of time required after an input signal has been applied for the resulting output change to occur .
- Several categories of propagation delay are important in the operation of a flip-flop.

1- Propagation delay $T_{\text {plh }}$ as measured from the triggering edge of the clock pulse to the LOW-to-HIGH transition of the output. This delay is illustrated in figure(42-a).
2- Propagation delay $\mathrm{T}_{\text {PHL }}$ as measured from the triggering edge of the clock pulse to the HIGH-to-LOW transition of the output. This delay is illustrated in figure(42-b).
3- Propagation delay $\mathrm{T}_{\text {plh }}$ as measured from the preset input to the LOW-to-HIGH transition of the output. This delay is illustrated in figure (43-a) for an active LOW preset input.

Fig(43): Propagation delays, preset input to output and clear input to output.

SET-UP TIME

The set-up time (t_{s}) is the minimum interval required for the logic levels to be maintained constantly on the inputs (J and K , or S and R , or D) prior to the triggering edge of the clock pulse in order for the levels to be reliably clocked into the flip-flop. This interval is illustrated in figure (44) for a D flip-flop.

HOLD TIME

the hold time (t_{n}) required for the logic levels to remain on the inputs after the triggering edge of the clock pulse in order for the levels to be reliably clocked into the flip-flop. This interval is illustrated in figure (45) for a D flip-flop.

Fig(45): Hold time (t_{h})

QUESTIONS

1) For the following four problems, feed the specified inputs into the flip-flops, sketch the output wave at Q and list the flip-flop functions. The flip-flops are level clocked. G: gate or clock, S and R are the set and reset inputs, D:data input, Cp : clock pulse, $\overline{\mathrm{S}_{\mathrm{d}}}$ and $\overline{R_{d}}$ are the direct (asynchronous) set and reset respectively.

2)

G

D

3)

R

4)
5) Draw the logic diagram of the gated NOR S-R latch. Explain in details its operation. Explain the race condition.
6) Draw the logic diagram of the gated NAND S-R latch. Explain in details its operation. Explain the race condition.
7) Draw the logic diagram of a master-slave J-K flip-flop using AND-NOR gates. Explain the operation of the master-slave with a timing diagram. Explain the 1's catching problem.
8) Draw the logic diagram and explain the operation of a master-slave J-K flip-flop using NAND gates. Explain with a timing diagram how the master-slave is used to solve the race problem in level clocked J-K flip-flops.
9) Design a switch debouncing circuit using NOR latch. Explain in details the operation of the circuit.
10) Explain why the S-R latch is called asynchronous and the gated S-R flip-flop is called synchronous.
11) What procedure would you use to reset the Q output of a gated D flip-flop?
12) For the inputs at D_{0} and E_{0-1}, in the 7475 D latch, sketch the output waveform at Q_{0}.

13) The Q output of the 7475 D latch follows the level of the D input as long as E is ----(low or high).
14) The Q output of the 74LS76 shown in figure is used to drive an LED. Sometimes when the switch is closed the LED toggles to its opposite state but sometimes it does not. Discuss the problem cause and a solution to the problem.

1
15) Sketch the Q output in the following master-slave JK flip-flop in relation to the clock. Q is initially low.

16) Repeat the previous problem for a JK flip-flop that triggers on the positive edge.
17) Typically a manufacturer's data sheet specifies four different propagation delay times associated with a flip-flop. Name and describe each one.
18) The datasheet of a certain flip-flop specifies that the minimum HIGH time of the clock pulse is 30 ns and the minimum LOW time is 37 ns . What is the minimum operating frequency?

CHAPTER 7

Sequential Circuit Analysis and Design

FLIP-FLOP EXCITATION TABLES :

- When it is required to analyze a sequential circuit, we are given the flip-flop inputs and asked to give the corresponding output.
- To do that, we must know the characteristic table of the give flip-flop. Table [20] shows the characteristic table of the four types of flip-flops.

S	R	$\mathrm{Q}(\mathrm{t}+1)$
0	0	$\mathrm{Q}(\mathrm{t})$
0	1	0
1	0	1
1	1	$*$

J	K	$\mathrm{Q}(\mathrm{t}+1)$
0	0	$\mathrm{Q}(\mathrm{t})$
0	1	0
1	0	1
1	1	$\overline{\mathrm{Q}}(\mathrm{t})$

T	$\mathrm{Q}(\mathrm{t}+1)$
0	$\mathrm{Q}(\mathrm{t})$
1	$\overline{\mathrm{Q}}(\mathrm{t})$

Table [20] : Characteristic (Function) tables of the four types of flip-flops.

* When it is required to design a sequential circuit the required sequence of input-output of the circuit is given (present state - next state of output), and it is required to design the input of the flip-flop (S-R, T , J-K or D) to give the desired output
e.g for an S-R sequential circuit:

* The excitation table is the reverse of the function (characteristic) table of the flip-flop. Table [21] shows the excitation table of S-R flip-flop.

Present state $\mathrm{Q}(\mathrm{t})$	Next state	S	R	Comments	S	R	Comments
0	0	0	0	No change	0	x	
0	1	1	or reset	R is do not care because both $\mathrm{R}=0$ and $\mathrm{R}=1$ give the required $\mathrm{Q}(\mathrm{t}+1)$			
0	0	1	0	Set	1	0	
1	1	0	0	No change	x	0	S is do not care because both $\mathrm{S}=$ 0 and $\mathrm{S}=1$ give the required $\mathrm{Q}(t+1)$
1	1	0	or set				

Table [21] : excitation table of SR flip - flop

* The excitation tables of all types of flip-flops are shown in table [22]

Present state $\mathrm{Q}(\mathrm{t})$	Next state $\mathrm{Q}(\mathrm{t}+1)$	S	R
0	0	0	x
0	1	1	0
1	0	0	1
1	1	x	0

Present		
state		
$\mathrm{Q}(\mathrm{t})$	Next state $\mathrm{Q}(\mathrm{t}+1)$	D
0	0	0
0	1	1
1	0	0
1	1	1

Present			
state			
$\mathrm{Q}(\mathrm{t})$	Next state $\mathrm{Q}(\mathrm{t}+1)$	J	K
0	0	0	x
0	1	1	x
1	0	x	1
1	1	X	0

Present	Next state state $\mathrm{Q}(\mathrm{t})$	T
0	0	0
0	1	1
1	0	1
1	1	0

Table [21] : Excitation table of the 4 - types of flip - flops.

BASIC DEFINITIONS OF SEQUENTIAL CIRCUITS

Sequential circuit :

Any digital circuit with memory due to feedback, particularly a circuit with latches or flipflops is a sequential circuit.

State Versus Output:

The state of a sequential circuit is the set of flip-flop output values at a given time. State is generally not the same thing as the circuit output.

Moore Circuits (Fig (46)) :

- In a Moore circuit, the outputs are function of the present state only, i.e.; function of flip-flops outputs.
- Some flip-flops outputs may not participate in output at all. Flip-flops that do not directly influence the output are described as "Hidden". For example: a shift register where output is taken from the last flip-flop.

Fiv(46): General Form of Moore Circuit.

Mealy Circuits:

In a Mealy circuit, the output is a function of both the present state and the external inputs (Fig (47)).

- In a Moore circuit, the output is synchronized with the clock because it depends only on the flip-flops outputs.
- In a Mealy circuit, the output may change if the inputs change during the clock - pulse period.

Fig(47): General Form of Mealy Circuit.

Counters

- A counter is a sequential circuit that goes through a prespecified sequence of states upon the application of input pulses.
- An n-bit counter consists of n - flip-flops and can count in binary from 0 to $\left(2^{\mathrm{n}}-1\right)$.

State Diagram:

The sequence of states of a sequential circuit, along with the external input and the output of the circuit, can be represented graphically using a state diagram. Fig (48) shows an example of a state diagram for a 2-bit counter.

Fig(48): State diagram of a 2 -bit counter.

- Each oval shape in the state diagram represents one state of the sequential circuit, e.g. 00, 01, 10, 11.
- The arrow connecting two states is directed from the present state towards the next state.
- The label on the arrow represents the value of the input of the circuit that leads to this transition.
- So, in fig (48) when the input $(x)=0$, the state of the network counts from $00 \rightarrow 01 \rightarrow 10 \rightarrow 11$ and then back to 00 .
- If the sequential circuit has an external output; other than the state; it will be labeled on the state diagram exactly as the input but in the form (x / y). Where x is the input as before, and y is the corresponding output. (Fig (50)).

ANALYSIS OF A SEQUENTIAL CIRCUIT :

EXAMPLE 19:

Given the sequential circuit shown in Fig (49), analyze this circuit to show the sequence of output the circuit produces.

Solution :

To analyze any sequential circuit, we go through the following sequence of steps.

1) From the logic (or block) diagram of the sequential circuit, get the flip-flops input functions:

$$
\mathrm{R}_{\mathrm{A}}=\overline{\mathrm{B}} \mathrm{x}, \mathrm{~S}_{\mathrm{A}}=\mathrm{B} \overline{\mathrm{x}}, \mathrm{R}_{\mathrm{B}}=\mathrm{A} \overline{\mathrm{x}}, \mathrm{~S}_{\mathrm{B}}=\overline{\mathrm{A}} \mathrm{x},
$$

, also get the output function(s) :

Fig(49)

$$
\mathrm{Y}=\overline{\mathrm{A}} \mathrm{x}
$$

Make the state diagram of the circuit as follows:

P.S.	Input	FF	FF Inputs	N.S.	O / p

A	B	X	R_{A}	S_{A}	R_{B}	S_{B}	A	B	Y
0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	1	0	1	1
0	1	0	0	1	0	0	1	1	0
0	1	1	0	0	0	1	0	1	1
1	0	0	0	0	1	0	1	0	0
1	0	1	1	0	0	0	0	0	0
1	1	0	0	1	1	0	1	0	0
1	1	1	0	0	0	0	1	1	0

2. Draw the state diagram for the circuit

Fig(50): State diagram

EXAMPLE 20:

Study the sequential circuit shown in figure(51), and draw its state diagram.

- The state of the circuit is $Q_{D} Q_{C} Q_{B} Q_{A}$, but only Q_{D} is output.
- $\mathrm{J}_{\mathrm{A}}=\mathrm{K}_{\mathrm{A}}=\mathrm{Q}_{\mathrm{A}} \oplus\left(\mathrm{Q}_{\mathrm{B}}+\mathrm{Q}_{\mathrm{C}}\right)=\mathrm{Q}_{\mathrm{A}}\left(\mathrm{Q}_{\mathrm{B}}+\mathrm{Q}_{\mathrm{C}}\right)+\mathrm{Q}^{`}{ }_{\mathrm{A}}\left(\mathrm{Q}_{\mathrm{B}}+\mathrm{Q}_{\mathrm{C}}\right)^{`}$

$$
=\mathrm{Q}_{\mathrm{A}} \mathrm{Q}_{\mathrm{B}}+\mathrm{Q}_{\mathrm{A}} \mathrm{Q}_{\mathrm{C}}+\mathrm{Q}^{`} \mathrm{~A}_{\mathrm{C}} \mathrm{Q}_{\mathrm{B}} \mathrm{Q}^{\prime} \mathrm{C}
$$

$\mathrm{J}_{\mathrm{B}}=\mathrm{Q}_{\mathrm{A}} \mathrm{K}_{\mathrm{B}}$	=	Q` \({ }^{\text {A }}\) \\ \hline \(\mathrm{J}_{\mathrm{D}}\) & = & Qc \\ \hline \(\mathrm{K}_{\mathrm{D}}\) & \(=\) & Q`c

$$
\mathrm{J}_{\mathrm{C}}=\mathrm{Q}_{\mathrm{B}} \quad \mathrm{~K}_{\mathrm{C}}=\mathrm{Q}_{\mathrm{B}}
$$

- State table :
-

Present state				next state						Flip-flops inputs					
Q_{D}	Q_{C}	Q_{B}	Q_{A}	Q_{D}	Q_{C}	Q_{B}	Q_{A}	J_{D}	K_{D}	J_{C}	K_{C}	J_{B}	K_{B}	$\mathrm{J}_{\mathrm{A}}=\mathrm{K}_{\mathrm{A}}$	
0	0	0	0	0	0	0	1	0	1	0	1	0	1	1	

| 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
| 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

- State diagram
- The repeating cycle does not include the reset state 0000 .
- The output (Q_{D}) is:

$$
Q_{D}=00001100011 \quad 00011 \ldots . \text { With four 0s at the RESET start. }
$$

Fig(52)

Analysis of synchronous counters

EXAMPLE 21:

Starting at $Q_{C} Q_{B} Q_{A}=000$, what sequence does the synchronous circuit of three D flip-flops shown in figure(53) step through ?

Fig(53)

FF input (excitation) functions

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{A}}=\overline{\mathrm{Q}}_{\mathrm{A}} \\
& \mathrm{D}_{\mathrm{B}}=\mathrm{Q}_{\mathrm{C}} \oplus \mathrm{Q}_{\mathrm{A}}+\mathrm{Q}_{\mathrm{B}} \overline{\mathrm{Q}}_{\mathrm{A}}+\mathrm{Q}_{\mathrm{B}} \overline{\mathrm{Q}}_{\mathrm{C}}=\mathrm{Q}_{\mathrm{A}} \overline{\mathrm{Q}}_{\mathrm{C}}+\overline{\mathrm{Q}}_{\mathrm{A}} \mathrm{Q}_{\mathrm{C}}+\overline{\mathrm{Q}}_{\mathrm{A}} \mathrm{Q}_{\mathrm{B}}+\mathrm{Q}_{\mathrm{B}} \overline{\mathrm{Q}}_{\mathrm{C}} \\
& \mathrm{D}_{\mathrm{C}}=\mathrm{Q}_{\mathrm{B}}\left(\mathrm{Q}_{\mathrm{A}} \oplus \mathrm{Q}_{\mathrm{C}}\right)=\mathrm{Q}_{\mathrm{A}} \overline{\mathrm{Q}}_{\mathrm{C}} \mathrm{Q}_{\mathrm{B}}+\overline{\mathrm{Q}}_{\mathrm{A}} \mathrm{Q}_{\mathrm{C}} \mathrm{Q}_{\mathrm{B}}
\end{aligned}
$$

State table :

Present state			Next state			FF inputs		
Qc	QB	QA	Qc	QB	QA	DC	DB	$\mathrm{D}_{\text {A }}$
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	0
0	1	0	0	1	1	0	1	1
0	1	1	1	1	0	1	1	0
1	0	0	0	1	1	0	1	1

1	0	1	0	0	0	0	0	0
1	1	0	1	1	1	1	1	1
1	1	1	0	0	0	0	0	0

The resulting sequence of states is :

Q_{C}	Q_{B}	Q_{A}	Decimal val.
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	1	0	6
1	1	1	7

and then it repeats the sequence.

State diagram :

Fig(54)

DESIGN OF SEQUENTIAL CIRCUITS :

EXAMPLE 21:

Design a clocked sequential circuit with the given state diagram. Use JK flip-flops.

1. State diagram :

Fig(55)

2. Excitation table :

Present state A		B	Input	Next state			F.F. inputs			
X	A	B	J_{A}	K_{A}	J_{B}	K_{B}				
0	0	0	0	0	0	x	0	x		
0	0	1	0	1	0	x	1	x		
0	1	0	1	0	1	x	x	1		
0	1	1	0	1	0	x	x	0		
1	0	0	1	0	x	0	0	x		
1	0	1	1	1	x	0	1	x		
1	1	0	1	1	x	0	x	0		
1	1	1	0	0	x	1	x	1		

3- Karnaugh map

	1	x	x
	1	x	x

$\mathrm{J}_{\mathrm{A}}=\mathrm{B} \overline{\mathrm{X}}$
K_{A}
J_{B}

$$
\begin{array}{ccc}
= & \mathrm{B} & \mathrm{X} \\
= & & \mathrm{X}
\end{array}
$$

$$
\mathrm{K}_{\mathrm{B}}=\mathrm{XA}+\overline{\mathrm{A}} \overline{\mathrm{X}}
$$

$$
=\mathrm{A} \odot \mathrm{X}
$$

4-Logic diagram:

Fig(56)

Design with unused states:

mflip \longrightarrow flops
$2^{\mathrm{m}} \quad$ states

As we know that a circuit with m flip-flops can produce up to 2^{m} states. In some sequential circuits not all these states are used. For example, a counter circuit that goes through the repeated sequence $0,3,6,9$. This circuit is implemented using four flip-flops that can produce up to sixteen states $(0-15)$. So, the twelve remaining states $(1,2,4,5,7,8,10,11,12,13,14,15)$ are considered as unused states.

EXAMPLE 22

Design a sequential circuit to satisfy the state diagram shown in figure(57). Use SR flipflops. Treat the unused states as do not care conditions.

Solution:

1. state diagram

see fig (57)

3. Excitation table :

The excitation table of the SR flip-flop is as follows:

$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$	S	R
0	0	0	x
0	1	1	0
1	0	0	1
1	1	x	0

Fig(57)
Use this table and the given state diagram to reach to the following excitation table:

	Present state			Input	Next state							F.F inputs					
	A	B	C	X	A	B	C	S_{A}	R_{A}	S_{B}	R_{B}	S_{C}	R_{C}	Y			
2	0	0	1	0	0	0	1	0	x	0	x	x	0	0			
3	0	0	1	1	0	1	0	0	x	1	0	0	1	0			
4	0	1	0	0	0	1	1	0	x	x	0	1	0	0			
5	0	1	0	1	1	0	0	1	0	0	1	0	x	0			
6	0	1	1	0	0	0	1	0	x	0	1	x	0	0			

7	0	1	1	1	1	0	0	1	0	0	1	0	1	0
8	1	0	0	0	1	0	1	x	0	0	x	1	0	0
9	1	0	0	1	1	0	0	x	0	0	x	0	x	1
10	1	0	1	0	0	0	1	0	1	0	x	x	0	0
11	1	0	1	1	1	0	0	x	0	0	x	0	1	1

4- use the previous table to draw a Karnaugh map for each input of the flip flops taken into consideration the unused states.

Unused states

A	B	C	X
0	0	0	0
0	0	0	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

x	x	x	x
x			x
x	x	x	x
			1

x	x	1	
x			
x	x	x	x

X	X		X
	1	1	1
X	X	x	x
X	X	x	x

$\mathrm{S}_{\mathrm{A}}=\mathrm{BX} \quad \mathrm{R}_{\mathrm{A}}=\mathrm{C} \overline{\mathrm{X}} \quad \mathrm{S}_{\mathrm{B}}=\overline{\mathrm{A}} \overline{\mathrm{B}} \mathrm{X} \quad \mathrm{R}_{\mathrm{B}}=\mathrm{BC}+\mathrm{BX}$

$$
\mathrm{S}_{\mathrm{C}}=\overline{\mathrm{X}} \quad \mathrm{R}_{\mathrm{C}}=\mathrm{X} \quad \mathrm{Y}=\mathrm{A} \mathrm{X}
$$

5- The resulting logic diagram is shown in figure (58):

$\mathrm{Fig}(58)$

Example 23:

Analyze the sequential circuit obtained and determine the effect of the unused states.

Solution:

The unused states are : $000,110,111$. We can solve this problem like any analysis problem.

1-
Flip-flops input functions:

$$
\begin{array}{lll}
\mathrm{S}_{\mathrm{A}}=\mathrm{B} \mathrm{X} & \mathrm{R}_{\mathrm{A}}=\mathrm{C} \overline{\mathrm{X}} & \mathrm{~S}_{\mathrm{B}}=\overline{\mathrm{AB}} \mathrm{X} \\
\mathrm{R}_{\mathrm{B}}=\mathrm{BC}+\mathrm{BX} & \mathrm{~S}_{\mathrm{C}}=\overline{\mathrm{X}} & \mathrm{R}_{\mathrm{C}}=\mathrm{X} \\
\mathrm{Y}=\mathrm{AX} & &
\end{array}
$$

State table:

Present state			$\begin{aligned} & \text { Input } \\ & \text { X } \end{aligned}$	Next state			Output Y	F.F inputs					
A	B	C		A	B	C		S_{A}	R_{A}	S_{B}	R_{B}	S_{C}	R_{C}
0	0	0	0	0	0	1	0	0	0	0	0	1	0
0	0	0	1	0	1	0	0	0	0	1	0	0	1
1	1	0	0	1	1	1	0	0	0	0	0	1	0
1	1	0	1	1	0	0	1	1	0	0	1	0	1
1	1	1	0	0	0	1	0	0	1	0	1	1	0
1	1	1	1	1	0	0	1	1	0	0	1	0	1

State diagram :

Fig(59)

- If the circuit encounters one of the invalid states $(000,110$, or 111$)$ it goes to one of the valid ones within one or two clock pulses. For example: if $\mathrm{X}=0$, the circuit goes through the states $(110,111,001)$, if $\mathrm{X}=1$ it goes through the states: $(110,100)$.
- The circuit is self- starting and self-correcting.

Design of counters :

- A sequential circuit that goes through a pre specified sequence of states upon the application of input pluses is called a counter.
- An n-bit counter consists of \mathbf{n}-flip flops and can count in binary from $\mathbf{0}$ to $\mathbf{2}^{\mathbf{n}} \mathbf{- 1}$.

EXAMPLE 24:

Design a counter with the following binary sequence and repeat ($\mathbf{0 , 1 , 2 , 3 , 4 , 5}$). Use J K flip flops.

Excitation table :

Count sequence			Flip - Flop inputs					
A	B	C	J_{A}	K_{A}	J_{B}	K ${ }_{\text {B }}$	J_{C}	K_{C}
0	0	0	0	X	0	x	1	x
0	0	1	0	X	1	x	x	1
0	1	0	1	x	x	1	0	x
1	0	0	x	0	0	x	1	x
1	0	1	x	0	1	x	x	1
1	1	0	x	1	x	1	0	X

Effect of the two unused states:

State table

Present state			Next state			F.F inputs					
A	B	C	A	B	C	J_{A}	KA	J_{B}	K ${ }_{\text {B }}$	J_{C}	KC
0	1	1	1	0	0	1	1	1	1	0	1
1	1	1	0	0	0	1	1	1	1	0	1

State diagram of the counter

Fig(60)
The counter is sell correcting \& self starting. Why?

EXAMPLE 25:

Design a two-bit count down counter. This is a sequential circuit with two flip flops and one input x. When $x=0$, the state of the flip-flops doesn't change. When $x=1$ the state sequence is $11,10,01,00,11$ and so on.

1-State diagram :

Fig(61)

2- Excitation table :

Present state		$\begin{aligned} & \text { Input } \\ & \mathrm{X} \end{aligned}$	Next state		Flip flop inputs			
A	B		A	B	J_{A}	K_{A}	J_{B}	KB
0	0	0	0	0	0	X	0	x
0	0	1	1	1	1	x	1	x
0	1	0	0	1	0	x	x	0
0	1	1	0	0	0	x	x	1
1	0	0	1	0	x	0	0	x
1	0	1	0	1	x	1	1	x
1	1	0	1	1	X	0	x	0
1	1	1	1	0	X	0	X	1

3- Map Simplification :
The excitation table of the JK flip-flop is:

$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$	J	K
0	0	0	x
0	1	1	x
1	0	x	1
1	1	X	0

EXAMPLE 26:

 Consider the next state for all unused states as zero (0000).

Solution:

State Diagram :

Excitation table :

									Prext state					FFs inputs			
	A	B	C	D	A	B	C	D	D_{A}	D_{B}	D_{C}	D_{D}					
0	0	0	0	0	0	0	1	1	0	0	1	1					
3	0	0	1	1	0	1	1	0	0	1	1	0					
6	0	1	1	0	1	0	0	1	1	0	0	1					
9	1	0	0	1	1	1	0	0	1	1	0	0					
12	1	1	0	0	0	0	0	0	0	0	0	0					

Key

$\mathbf{D}_{\mathbf{A}}=\mathbf{A}^{`} \mathbf{B C} \mathbf{D}^{`}+\mathbf{A B}^{`} \mathbf{C}^{`} \mathbf{D}$

$\mathbf{D}_{\mathrm{B}}=\mathbf{A B C D}{ }^{`}+\quad \mathrm{AB}^{`} \mathbf{C}^{\prime} \mathbf{D}$ -149-

D		
1		1

Logic circuit:

The logic circuit of the counter is shown in figure(63). Not all the inputs of the flipflops are labeled. The others should be connected and labeled according to the previous equations.

EXAMPLE 27:

Redesign the counter described in example (26), but consider that the unused states are don't care conditions.

Analysis of unused states:

state table

Present State						Next State		
	A	B	C	D	A	B	C	D
1	0	0	0	1	0	1	1	1
2	0	0	1	0	0	0	0	0
4	0	1	0	0	0	1	1	0
5	0	1	0	1	0	1	1	1
7	0	1	1	1	1	1	1	1
8	1	0	0	0	0	0	0	0
10	1	0	1	0	0	0	0	0
11	1	0	1	1	1	1	0	0
13	1	1	0	1	1	1	0	0
14	1	1	1	0	1	0	0	1
15	1	1	1	1	1	1	0	1

State Diagram :

Fig(64)

1- All the unused states lead to one of the used states. So, the counter is self starting and self correcting .

EXAMPLE 28:

Repeat the previous example using J K flip-flops.
*
Count sequence : 0369120

$\mathrm{Q}(\mathrm{t})$	$\mathrm{Q}(\mathrm{t}+1)$	J	K
0	0	0	x
0	1	1	x
1	0	x	1

Excitation Table:

	Present state				Next state				FFs inputs			$\mathrm{K}_{\text {B }}$	$\mathrm{J}_{\text {C }}$	K_{C}	J_{D}	K_{D}
	A	B	C	D	A	B	C	D	J_{A}	$\mathrm{K}_{\text {A }}$	J_{B}					
0	0	0	0	0	0	0	1	1	0	X	0	x	1	x	1	x
3	0	0	1	1	0	1	1	0	0	X	1	x	X	0	x	1
6	0	1	1	0	1	0	0	1	1	x	x	1	X	1	1	x
9	1	0	0	1	1	1	0	0	X	0	1	X	0	X	x	1
12	1	1	0	0	0	0	0	0	x	1	x	1	0	X	0	x

$\mathrm{J}_{\mathrm{A}}=\mathrm{B}$
$\mathrm{K}_{\mathrm{A}}=\mathrm{B}$
$J_{E}=D$

$\mathrm{K}_{\mathrm{E}}=1$

$\mathrm{J}_{\mathrm{c}}=\mathrm{A}$
$\mathrm{K}_{\mathrm{c}}=\mathrm{B}$
$\mathrm{J}_{\mathrm{D}}=\mathrm{A}^{\prime}$
$K_{D}=1$

Analysis of the unused states:

$$
\begin{aligned}
& \mathbf{J}_{\mathbf{A}}=\mathbf{K}_{\mathbf{A}}=\mathbf{B}, \mathbf{J}_{\mathbf{B}}=\mathbf{D}, \mathbf{K}_{\mathbf{B}}=\mathbf{1} \\
& \mathbf{J}_{\mathbf{C}}=\mathbf{A}^{\prime}, \mathbf{K}_{\mathrm{C}}=\mathbf{B}, \mathbf{J}_{\mathbf{D}}=A^{\prime}, K_{\mathbf{D}}=\mathbf{1}
\end{aligned}
$$

State table :

Present	state	Next State											
A	B	C	D	A	B	C	D	J	K	J	K	J	K
								K					

1	0	0	0	1	0	1	1	0	0	0	1	1	1	0	1	1
2	0	0	1	0	0	0	1	1	0	0	0	1	1	0	1	1
4	0	1	0	0	1	0	1	1	1	1	0	1	1	1	1	1
5	0	1	0	1	1	0	1	0	1	1	1	1	1	1	1	1
7	0	1	1	1	1	0	0	0	1	1	1	1	1	1	1	1
8	1	0	0	0	1	1	0	0	0	0	0	1	0	0	0	1
10	1	0	1	0	1	1	1	0	0	0	0	1	0	0	0	1
11	1	0	1	1	1	1	1	0	0	0	1	1	0	0	0	1
13	1	1	0	1	0	0	0	0	1	1	1	1	0	1	0	1
14	1	1	1	0	0	0	0	0	1	1	0	1	0	1	0	1
15	1	1	1	1	0	0	0	0	1	1	1	1	0	1	0	1

State Diagram :

Fig(65)

- All the unused states lead to one of the used states

EXAMPLE 29:

A sequential circuit with two D flip-flops, A and B, two inputs x and y; and one output z is specified by the following next-state and output equations:

$$
\begin{aligned}
& \mathbf{A}(\mathbf{t}+\mathbf{1})=\mathbf{x}^{\prime} \mathbf{y}+\mathrm{xA} \\
& \mathbf{B}(\mathbf{t}+\mathbf{1})=\mathbf{x}^{\prime} \mathbf{B}+\mathbf{x A}
\end{aligned}
$$

$$
\mathbf{Z}=\mathbf{B}
$$

a) Draw the logic diagram of the circuit.
b) Derive the state table.
c) Derive the state diagram.

Fig(66)
Solution:

1-Flip-Flops equations:

$$
\begin{aligned}
& \mathbf{D A}=x^{\prime} \mathbf{y}+\mathrm{xA} \\
& \mathbf{D B}=\mathbf{x}^{\prime} \mathbf{B}+\mathbf{x A}
\end{aligned}
$$

2- Output equation:
 $\mathbf{z}=\mathbf{B}$

3- State table:

Present state			Input		Next state	
A	B	x	y	A	B	Z
$\mathbf{0}$						
0	0	0	1	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{0}$	0	1	0	0	0	0

0	0	1	1	0	0	0
0	1	0	0	0	1	1
0	1	0	1	1	1	1
0	1	1	0	0	0	0
0	1	1	1	0	0	0
1	0	0	0	0	0	0
1	0	0	1	1	0	0
1	0	1	0	1	1	1
1	0	1	1	1	1	1
1	1	0	0	0	1	1
1	1	0	1	1	1	1
1	1	1	0	1	1	1
1	1	1	1	1	1	1

3-State diagram

Fig(67)

EXAMPLE 30:

Derive the state table and the state diagram of the sequential circuit shown in figure. Explain the function that the circuit performs.

Solution:

$\operatorname{Fig}(68)$

Flip-flops equations:

$\mathbf{T}_{\mathrm{A}}=\mathbf{A}+\mathbf{B}$

$$
\mathbf{T}_{\mathbf{B}}=\mathbf{A}^{\prime}+\mathbf{B}
$$

State table:

Present state		Next state		F.F inputs	
A	B	A	B	$\mathrm{T}_{\text {A }}$	$\mathrm{T}_{\text {B }}$
0	0	0	1	0	1
0	1	1	0	1	1
1	0	0	0	1	0
1	1	0	0	1	1

State diagram:

The circuit counts through the repeated sequence:

$$
\mathbf{0 0}, \mathbf{0 1}, \mathbf{1 0}
$$

EXAMPLE 31:

Analyze the circuit shown in figure and prove that it is equivalent to a \mathbf{T} flip-flop.
Solution:

Fig(69)
$\mathbf{D}=\mathbf{Q} \oplus \mathbf{T}$

Present state	Input	Next state	
$\mathbf{Q (t)}$	\mathbf{T}	$\mathbf{Q (t + 1)}$	$\mathbf{D}=\mathbf{Q} \oplus$
			\mathbf{T}
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	0

We notice that, when $T=\mathbf{0}, \mathbf{Q}(\mathbf{t}+\mathbf{1})=\mathbf{Q}(\mathbf{t})$

$$
\text { When } T=1, Q(t+1)=Q^{\prime}(t)
$$

Therefore, it is equivalent to a T flip-flop.

EXAMPLE 32:

Design a synchronous counter that counts through the hexadecimal sequence $2,4,8, \mathrm{~A}, \mathrm{C}$ and then repeats. Use D flip-flops. Treat the unused states as don't care conditions.

Solution:

Excitation Table:

Present state				Next state				Flip Flops inputs			
A	B	C	D	A	B	C	D	D_{A}	$\mathrm{D}_{\text {B }}$	D_{C}	$\mathrm{D}_{\text {D }}$
0	0	1	0	0	1	0	0	0	1	0	0
0	1	0	0	1	0	0	0	1	0	0	0
1	0	0	0	1	0	1	0	1	0	1	0
1	0	1	0	1	1	0	0	1	1	0	0
1	1	0	0	0	0	1	0	0	0	1	0

\mathbf{x}	\mathbf{x}	\mathbf{x}	$\mathbf{2}$
$\mathbf{4}$	\mathbf{x}	\mathbf{x}	\mathbf{x}
\mathbf{C}	\mathbf{x}	\mathbf{x}	\mathbf{x}
$\mathbf{8}$	\mathbf{x}	\mathbf{x}	\mathbf{A}

Key

\mathbf{x}	\mathbf{x}	\mathbf{x}	
$\mathbf{1}$	\mathbf{x}	\mathbf{x}	\mathbf{x}
	\mathbf{x}	\mathbf{x}	\mathbf{x}
$\mathbf{1}$	\mathbf{x}	\mathbf{x}	$\mathbf{1}$

$$
\mathbf{D}_{\mathbf{A}}=\mathbf{A}^{\prime} \mathbf{B}+\mathbf{A} \mathbf{B}^{\prime}=\mathbf{A} \oplus \mathbf{B}
$$

\mathbf{x}	\mathbf{x}	\mathbf{x}	$\mathbf{1}$
	\mathbf{x}	\mathbf{x}	\mathbf{X}
	\mathbf{x}	\mathbf{x}	\mathbf{X}
	\mathbf{x}	\mathbf{x}	$\mathbf{1}$

$$
D_{B}=\mathbf{C}
$$

\mathbf{X}	\mathbf{x}	\mathbf{x}	
	\mathbf{x}	\mathbf{x}	\mathbf{x}
$\mathbf{1}$	\mathbf{x}	\mathbf{x}	\mathbf{x}
$\mathbf{1}$	\mathbf{x}	\mathbf{x}	

$$
\mathbf{D}_{\mathbf{C}}=\mathbf{A C}
$$

From the table $D_{D}=0$

- Draw the circuit yourself with four D flip flops using the functions concluded before.

EXAMPLE 33:

Analyze the unused states in the previous circuit to check if it is self-starting or not.

Solution:

$\mathbf{D} \mathbf{A}=\mathbf{A}^{\prime} \mathbf{B}+\mathbf{A} \mathbf{B}^{\prime}=\mathbf{A} \oplus \mathbf{B}$
$\mathrm{D}_{\mathrm{B}}=\mathbf{C}$
$\mathbf{D}_{\mathrm{C}}=\mathbf{A C}{ }^{\prime}$
$D_{D}=0$

State table for the unused states:

$\mathbf{A}(\mathbf{t}+\mathbf{1})=\mathbf{D}_{\mathrm{A}}$
$\mathrm{B}(\mathrm{t})=\mathrm{D}_{\mathrm{B}} \mathrm{C}(\mathrm{t}+1) \quad=\quad \quad \mathrm{D}_{\mathrm{C}}$

$$
\mathrm{D}(\mathrm{t}+1)=\mathrm{D}_{\mathrm{D}}
$$

State Table

Present state				Next state				After correction
A	B	C	D	A	B	C	D	A
0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	0	1
0	0	1	0	0	1	0	0	0
0	0	1	1	0	1	0	0	0
0	1	0	0	1	0	0	0	1
0	1	0	1	1	0	0	0	1
0	1	1	0	1	1	0	0	0
0	1	1	1	1	1	0	0	0
1	0	0	0	1	0	1	0	1
1	0	0	1	1	0	1	0	1
1	0	1	0	1	1	0	0	1
1	0	1	1	1	1	0	0	1
1	1	0	0	0	0	1	0	0
1	1	0	1	0	0	1	0	0
1	1	1	0	0	1	0	0	0
1	1	1	1	0	1	0	0	0

- The counter is not self-starting because state 0000 leads to state 0 . Also state 0001 leads to state 0000 .
- This problem can be fixed by taking:

$$
\mathbf{D A}=\mathbf{A B} \mathbf{B}^{\prime}+\mathbf{A}^{\prime} \mathbf{C}^{\prime}
$$

The value of A after the correction is show in the last column of the table. It is obvious that all the unused states lead to some used and the counter is now self-correcting.

EXAMPLE 34:

Convert a D flip-flop to a JK flip-flop by including input gates to the D flip-flop. The gates needed for the input of the D flip-flop can be determined by means of sequential circuit design procedures.

Solution:

The sequential circuit will have one D flip-flop and two inputs, J and K. It is required to get D as function of J and K so that the D flip-flop acts as a J K flip-flop.

Excitation table:

Present state	Inputs		Next state	F F input
$\mathbf{A (t)}$	J	K	$\mathbf{A (t + 1)}$	\mathbf{D}
$\mathbf{0}$	0	0	0	0
0	0	1	0	0
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	0	0
1	1	0	1	1
1	1	1	0	0

		1	1
1			1

$\mathbf{D}=\mathbf{A} \mathbf{J}+\mathbf{A} \mathbf{K}^{\prime}$

Fig(70)
3

- The next state is first determined according to the value of J and K ; e.g. if $\mathrm{JK}=00$ it is a no-change condition, and so on.
- The D input is determined from the next state where: $\mathrm{D}=\mathrm{A}(\mathrm{t}+1)$
- D is simplified by a Karnaugh map.
- The resulting circuit is as drawn in figure.

EXAMPLE 35:

Design a sequential circuit with two JK flip-flops, A and B , and two inputs, E and x . If $\mathrm{E}=$ 0 , the circuit remains in the same state regardless of the value of x. When $E=1$ and $x=1$, the circuit goes through the state transitions from $00,01,10,11$ and then repeats. When $\mathrm{E}=1$ and $\mathrm{x}=0$, the , circuit goes through the state transitions from $11,10,01,00$ and then repeats.

Solution:

Function table of the required counter

\mathbf{E}	x	Function
$\mathbf{0}$	0	No-change
0	1	No-change
1	0	2-bit up-counter
1	1	2-bit down counter

Flip-flop excitation table

$\mathbf{Q}(\mathbf{t})$	$\mathbf{Q}(\mathbf{t}+\mathbf{1})$	\mathbf{J}	\mathbf{K}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	\mathbf{X}
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	\mathbf{X}
$\mathbf{1}$	$\mathbf{0}$	\mathbf{x}	$\mathbf{1}$

$\mathbf{1}$	$\mathbf{1}$	\mathbf{x}	$\mathbf{0}$

Function table:

Inputs		Present state		Next state		Flip flop inputs			
E	x	A	B	A	B	JA	KA	JB	KB
0	0	0	0	0	0	0	X	0	X
0	0	0	1	0	1	0	X	X	0
0	0	1	0	1	0	X	0	0	X
0	0	1	1	1	1	X	0	X	0
0	1	0	0	0	0	0	X	0	X
0	1	0	1	0	1	0	X	X	0
0	1	1	0	1	0	X	0	0	X
0	1	1	1	1	1	X	0	X	0
1	0	0	0	0	1	0	X	1	X
1	0	0	1	1	0	1	X	X	1
1	0	1	0	1	1	X	0	1	X
1	0	1	1	0	0	X	1	X	1
1	1	0	0	1	1	1	X	1	X
1	1	0	1	0	0	0	X	X	1
1	1	1	0	0	1	X	1	1	X
1	1	1	1	1	0	X	0	X	1

		\mathbf{X}	\mathbf{X}
		\mathbf{X}	\mathbf{X}
$\mathbf{1}$		\mathbf{X}	\mathbf{X}
	$\mathbf{1}$	\mathbf{X}	\mathbf{X}

$\mathbf{J A}=\mathbf{E} \mathbf{B} \mathbf{x}^{\prime}+\mathbf{E} \mathbf{B}^{\prime} \mathbf{x}$

$$
\begin{array}{ll}
\text { Similarly: } \mathbf{K A}=\mathbf{E} \mathbf{B} \mathbf{x}{ }^{\prime}+\mathbf{E} \mathbf{B} \mathbf{B}^{\mathbf{x}} & \mathbf{J}_{\mathbf{B}}=\mathbf{E} \\
\mathbf{K}_{\mathbf{B}}=\mathbf{E}
\end{array}
$$

- Draw the circuit with two JK flip-flops with the functions concluded above.

EXAMPLE 36:

Design a counter that goes through the sequence $\mathbf{0 , 1 , 3 , 5 , 7}$ and repeats. Use T flip-flops. Treat the unused states as do not care conditions. Analyze the final circuit to ensure that it is self correcting. If your design produces a on self-correcting counter, you must modify the circuit to make it self correcting.

Solution:

Count sequence

flip flops inputs

TA TB TC
$0 \quad 0 \quad 1$
$0 \quad 1 \quad 0$

110
$0 \quad 1 \quad 0$
111

		$\mathbf{1}$	\mathbf{X}
\mathbf{X}		$\mathbf{1}$	\mathbf{X}

$$
\mathbf{T}_{\mathrm{A}}=\mathbf{B}
$$

	$\mathbf{1}$	$\mathbf{1}$	\mathbf{X}
\underline{X}	$\mathbf{1}$	$\mathbf{1}$	\mathbf{X}

$$
\mathrm{T}_{\mathrm{B}}=\mathbf{C}
$$

$\mathbf{1}$			\mathbf{X}
\mathbf{X}		$\mathbf{1}$	\mathbf{X}

$$
\mathbf{T}_{\mathbf{C}}=\mathbf{A} \mathbf{B}+\mathbf{C}
$$

- Draw the circuit composed of three T flip-flops with the functions concluded.
- Analysis of the unused states:

P.S.	FF inputs	N.S.

\mathbf{A}	\mathbf{B}	\mathbf{C}	TA	TB	TC	A	B	C
$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$

Each of the unused states lead to one of the used states. Therefore, the counter is self correcting.

Draw the state diagram your self to assure this.

QUESTIONS

1) Design a counter circuit that goes through the repeated sequence $0,2,4,6$ use J-K flipflops.
2) Starting at $Q_{C} Q_{B} Q_{A}=000$, what sequence does the synchronous circuit of three D flip-flops step through ? Where

$$
\mathrm{D}_{\mathrm{C}}=\mathrm{Q}_{\mathrm{A}} \oplus \mathrm{Q}_{\mathrm{B}}
$$

$\mathrm{D}_{\mathrm{B}}=\mathrm{Q}_{\mathrm{B}} \quad \overline{\mathrm{QC}}$

$$
\mathrm{D}_{\mathrm{A}}=\mathrm{Q}_{\mathrm{B}}+\mathrm{Q}_{\mathrm{C}}
$$

3) When a student tries to design a counter that goes through the hexadecimal sequence $2,4,8, \mathrm{~A}, \mathrm{C}$ he reaches to the following design:

$$
\begin{array}{lll}
\mathrm{D}_{\mathrm{A}}=\mathrm{A} \oplus \mathrm{~B} \mathrm{D}_{\mathrm{B}} & = & \mathrm{C} \\
\mathrm{DC}_{\mathrm{C}} & = & \mathrm{AC}^{\prime} \\
& \mathrm{D}_{\mathrm{D}}=0
\end{array}
$$

Draw the logic diagram of the circuit. Is this circuit self-correcting or not?
4) A sequential circuit with two T flip-flops A and B one input x, is specified by the following equations:
$\mathrm{T}_{\mathrm{A}}=\mathrm{A}^{\prime} \mathrm{B}+\mathrm{x}^{\prime} \mathrm{B} \mathrm{T}_{\mathrm{B}} \quad=\quad \mathrm{A} \quad \oplus \quad \mathrm{B}$ Draw the logic diagram of the circuit and derive its state diagram.
5) Design a sequential circuit that goes through the sequence $1,3,5,7$. use D flip-flops. Treat the next state for all the unused states as do not care.
6) Design a MOD-6 synchronous counter that counts in the sequence $10,11,12,13,14,15,10,11,12, \ldots$ and so on. Use T flip-flops. Treat the next state for all unused states as do not care. Analyze the resulting circuit to ensure that it is selfcorrecting.
7) Design a MOD-4 UP/DOWN binary counter that has a control input x. If $x=0$ it counts from 0 to 3 and if $x=1$ it counts from 3 to 0 . Use S-R flip-flops.
8) A sequential circuit has two flip-flops, A, B; one input x and one output y. The state diagram is shown in figure. Design the circuit using J-K flip-flops. Is it a Moore or a Mealy circuit? Give reason.

9) A sequential circuit has three flip-flops, A, B, C; one input x and one output y. The state diagram is shown in figure. The circuit is to be designed by treating the unused states as do not care conditions. The final circuit must be analyzed to ensure that it is self-

correcting. Use D flip-flops.
10) Determine the sequence of states produced by the following circuit.

11) Determine the sequence of states of the following counter. The counter is initially cleared.

12) Design a sequential circuit to produce the following binary sequence and repeats. Use JK flip-flops. 1,4,3,5,6,2,1,....
13) Design a counter to produce the following binary sequence. $0,9,1,78,2,7,3,6,4,5,0$

1- Use JK flip flops.
2- Use D flip-flops.
3- Use RS flip-flops.
4- Use T flip-flops.

In each case analyze the resulting circuit to ensure that the counter is self starting and self correcting. You may treat the next state for the unused states as a don't care condition.
14) Design a binary counter with the sequence shown in the state diagram.

CHAPTER 8

Counter Circuits

CLASSIFICATION OF COUNTERS

Counters

Asynchronous (ripple)

Synchronous

They use the O/P of one FF
to generate the clock

Counters

Binary		Decimal		Octal	special	
$0,1,2, \ldots, 2^{\text {n }}-1$		$0,1,2, \ldots, 10$			Any	specified
i- $0,1,2,3$	2^{2} states	i- $0,1, \ldots . .9$	10 states		sequenc states	
ii- $0,1, \ldots, 15$	2^{4} states	ii- $0,1, \ldots 9$	100 states			

Counters

up
down
up/down

RIPPLE COUNTERS (ASYNCHRONOUS COUNTERS):

- In the counter circuits designed in part II, input pulses (clock) are simultaneously applied to all clock inputs of all flip-flops. So, all the flip-flops are synchronous, meaning that they are all triggered at exactly the same time.
- In ripple (or asynchronous) counters: The clock pulse inputs of all flip-flops (except the first one) are triggered not by the input pulses but by the output of other flip-flops.

3-bit Asynchronous Binary counter : (Mod-8)

To form a 3-bit ripple binary counter, we cascade three J-K flip-flops, each operating in the toggle mode as shown in figure (71).

- The clock input used to increment the binary count comes into the $\overline{\mathrm{C}}_{\mathrm{p}}$ input of the first flip-flop.
- Each flip-flop will toggle every time its clock input receives a HIGH - to - Low edge

Fig(71): Three-bit binary ripple counter.

Count sequence		
Q_{2}	Q_{1}	Q_{0}
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Timing diagram:

- Each negative edge causes the next flip-flop to toggle.
- Q_{0}
- Q_{1}
toggles at each negative edge of the clock input.
toggles at each negative edge of Q_{0}
-172-
- Q_{2} toggles at each negative edge of Q_{1}
- The result is that the outputs will count repeatedly from 000 up to 111 as shown in the timing diagram.
- The term ripple is derived from the fact that the input clock trigger is not connected to each flip-flop directly but instead has to propagate down through each flip-flop to reach the next.
- If we have a 4 - bit binary counters, we would count from 0000 up to 1111 , which are 16 different binary outputs.
- We can determine the number of states (modulus) of a binary counter by using the following formula:

Modulus $=2{ }^{\mathrm{N}}$
where
$\mathrm{N}=$ number of flip - flips on the condition that there are not any unused states.

Synchronous versus ripple counters:

[1] If we look at a given clock pulse, e.g. pulse 7, the negative edge $\overline{\mathrm{C}}_{\mathrm{p}}$ causes Q_{0} to toggle low which causes Q_{1} to toggle low which causes Q_{2} to toggle low. There will be a propagation delay between the time that $\overline{\mathrm{C}}_{\mathrm{p}}$ goes low until Q_{2} finally goes low. Because of this delay, ripple counters are called asynchronous counters, meaning that each flip-flop is not triggered at exactly the same time. The propagation delay - places limitations on the maximum frequency allowed by the clock.
[2] Synchronous counters can be formed by driving each flip-flop's clock by the same clock input. Synchronous counters are more complicated than ripples counters.

DOWN COUNTERS:

Fig(73): MOD-8 ripple down-counter.
To form a down - counter, simply take the binary outputs from the $\overline{\mathrm{Q}}$ outputs instead of the Q outputs, as shown in figure (73). The down counter waveforms are shown in the timing diagram in figure (74).

Timing diagram:

- When we compare the waveforms of the up counter and the down counter, we can see that they are exact complements of each other. So, the binary output is taken from $\overline{\mathrm{Q}}$ instead of Q .

- We can alternatively get count-down counter by connecting $\overline{\mathrm{Q}}$ of each stage to the negative edge triggered clock pulse of the next stage and get the output from Q output of the flip-flops.

DESIGN OF DIVIDE - BY - N COUNTERS:

- Counter circuits are also used as frequency dividers to reduce the frequency of periodic waveforms.
- If we study the waveforms generated by the MOD-8 (3-bit) counter discussed before, we notice that the frequency of the 2^{2} output line is one-eighth the frequency of the input clock. So, a MOD- 8 counter can be used as a divide - by $-8-$ frequency divider and a MOD - 16 can be used as a divide - by - 16 - frequency divider. The duty cycle of each of the out puts in figure (72) and (74) is 50%
- To design a divide - by - 5 (MOD -5) counter, we can modify the MOD -8 counter so that when it reaches the number 5 (101) all flip - flops will be reset.
- The new count sequence will be $0-1-2-3-4$-and so on. To get the counter to reset at number 5 (binary 101), you will have to monitor 2^{0} and 2^{2} lines and, when they are both HIGH, put out a low reset pulse to all flip flops. Figure (75) shows a circuit that can work as a MOD-5 ripple binary counter.
- The inputs to the NAND gate are connected to the 2^{0} and 2^{2} lines, so when the number 5 (101) comes up the NAND puts out a low level to Reset all flip - flops.
- As we can see from the timing diagram in figure (76), the number 5 will appear at the outputs for a short duration, just long enough to Reset the flip-flops. The resulting short pulse on the 2^{0} line is called a glitch. If t PHL of the NAND gate equals 15 ns and it also takes $30 \mathrm{~ns}\left(\mathrm{t}\right.$ phL) for the low on $\overline{\mathrm{R}_{\mathrm{D}}}$ to Reset the Q output to low. There fore, the total length of the glitch equals 45 ns . If the input clock period is in the microsecond range, then 45 ns is insignificant, but at extremely high clock frequencies, the glitch could give us erroneous results. Also notice that the duty cycle of each of the outputs is not 50% anymore.

Fig (75) : Connections to form a divide-by-5 (MOD - 5) Binary counter

Fig(76): Waveforms for the MOD-5 ripple counter.

- Any modulus counter (divide - by - N counter) can be formed by using external gating to Reset at a predetermined number.

BCD RIPPLE (DECADE) COUNTER

Counter with ten states in their sequence (modulus -10) are called decade counters. A decade counter with a count sequence of zero (0000) through nine (1001) is a BCD decade counter because its ten state sequence is the BCD code. This type of counter is useful in display applications in which BCD is required for conversion to decimal output.

Fig (77): connections to form a decade counter

Fig (77) shows a decade asynchronous counter. To obtain the count sequence ($0 \ldots . . .9$) and back to 0 , it is necessary to force the counter to recycle back to the 0000 state after the 1001 state. One way to make the counter recycle after the count nine is to decode count ten (1010) with a NAND gate and connect the output of the NAND gate to the clear ($\overline{\mathrm{CLR}}$) inputs at the flip flops as shown in figure (77). When the counter goes into count ten (1010), both 2^{1} and 2^{3} go HIGH at the same time and the output at the NAND gate goes low to reset all flip-flops.

- Figure (78) shows how to connect three counters to form a 3-decade decimal BCD counter that counts from 0 to 999 .

Fig (78): 3-decade counter.

EXAMPLE 37:

Draw the logic diagram of a 4-bit binary ripple up-counter using flip-flops that trigger on the positive edge transition.

Solution:

To design this counter start with the count sequence 0000-1111 (like the one used in case of -ve edge transition you studied). You can notice that:
A_{1} : complements at each count pulse.
A_{2} : Complements with each -ve edge of A_{1}.
A_{3} : Complements with each -ve edge transition of A_{2}.
A_{4} : Complements with each -ve edge transition of A_{3}.

EXAMPLE 38:

Draw the logic diagram of a 4-bit binary ripple down counter using the following:
a) Flip-flops that trigger on the positive edge transition.
b) Flip-flops that trigger on the negative edge transition.

Solution:

Start with the count sequence 1111-0000 (do it yourself), you will find that:
A_{1} : complements at each count pulse.
A_{2} : Complements with each +ve edge of A_{1}.
A_{3} : Complements with each +ve edge transition of A_{2}.
A_{4} : Complements with each + ve edge transition of A_{3}.
For positive edge triggered flip-flop, draw it similar to the previous problem.

For negative edge triggered flip-flop, draw it similar to the previous problem.

SYNCHRONOUS COUNTERS:

Synchronous counters eliminate the propagation delay time of the clock encountered in ripple counters because all the clock inputs are tied to a common clock input line, so each flip-flop will be triggered at the same time (thus any Q output transitions will occur at the same time).

If we want to design a 4-bit synchronous binary up counter with T flip-flops, the following steps are done:

Excitation table:

Count sequence				Flip-flops inputs			
A_{3}	$\mathrm{~A}_{2}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{0}$	$\mathrm{~T}_{\mathrm{A} 3}$	$\mathrm{~T}_{\mathrm{A} 2}$	$\mathrm{~T}_{\mathrm{A} 1}$	$\mathrm{~T}_{\mathrm{A} 0}$
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	1
0	0	1	0	0	0	0	1

0	0	1	1	0	1	1	1
0	1	0	0	0	0	0	1
0	1	0	1	0	0	1	1
0	1	1	0	0	0	0	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	1
1	0	0	1	0	0	1	1
.	\cdot						
.	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	.
1	1	1	1	1	1	1	1

We can conclude from the excitation table (using a Karnauph map or by inspection that

$$
\mathrm{T}_{\mathrm{A} 3}=\mathrm{A}_{0} \mathrm{~A}_{1} \mathrm{~A}_{2}
$$

Fig(82): A 4-bit synchronous binary counter using T-filp-flops.

The 4 - bit synchronous counter is shown in figure (82).

- The synchronous counter can be implemented using J-K flip-flops operated in toggle mode by joining J and K together as shown in figure (83).

- We notice that the first flip-flop toggles with each clock-pulse, the second flip-flop toggles when the output of the first flip-flop is HIGH, the third flip-flop toggles when the outputs of the first and the second flip- flops are both HIGH. This logic holds for all the stages and can be used to extend the counter to any number of n-bits.

SYNCHRONOUS BINARY DOWN-COUNTER:

A binary down- counter can be implemented in a similar way to the up counter. The only change is that the $\overline{\mathrm{Q}}$ outputs are used as inputs to the T (or $\mathrm{J}-\mathrm{K}$) input of the next flip-flop. The 4-bit synchronous binary down counter is shown in figure (84).

UP/DOWN SYNCHRONOUS COUNTERS:

An up/down counter is one that is capable of progressing in either direction through a certain sequence. An up/down counter, sometimes called a bi-directional counter, can have any specified sequence of states. A 3-bit binary counter that advances upward through the
sequence $(0,1,2,3,4,5,6,7)$ and then can be reversed so that it goes through the sequence in the opposite direction (7,6,5,4,3,2,1,0) is shown in figure (85).

- If the UP/DOWN input is HIGH, the upper AND gates are active and the circuit works as an up-counter.
- If the UP $/ \overline{\mathrm{DOWN}}$ input is LOW, the lower AND gates are active and the circuit works as a down counter.

Fig(85): A 3bit up/down synchronous counter.

QUESTIONS

1) Design and sketch a MOD-12 ripple up counter that can be manually RESET by an external push button. Explain the circuit operation in details.
2) Design a divide-by-14 ripple counter that can be manually RESET by an external push button. Sketch the timing diagram at the output of each stage and calculate the duty cycle at the final stage. Explain the circuit operation in details and the reason of the glitch at the final stage.
3) The waveforms shown are applied to the inputs at $A, \overline{R_{d}}$ and Cp . Sketch the resultant waveforms at $\mathrm{D}, \mathrm{Q}, \overline{\mathrm{Q}}$ and x .

4) What is the modulus of a counter whose output counts from:
a) 0 to 7
b)
5
to
0
c)
2
to
15

$$
\text { d) } 7 \text { to } 3
$$

5) How many J-K flip-flops are required to construct the following counters:
a) $\operatorname{Mod} 7$
b)
Mod
20
c)
Mod
d) $\operatorname{Mod} 2$
6) If the input frequency to a 6-bit counter is 10 MHz , what is the frequency at the following input terminals:
$2^{0}, 2^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}$
7) Draw the timing waveform at $\overline{\mathrm{C}_{\mathrm{p}}}, 2^{0}, 2^{1}, 2^{2}$ for a 3-bit binary up-counter for 10 clock pulses.
8) Repeat the previous problem for a binary down counter.
9) How many flip-flops are required to form the following divide-by-N frequency dividers?
a) divide-by- 12
b) divide-by-18.
10) Explain why the propagation delay of a flip-flop affects the maximum frequency at which a ripple counter can operate.
11) Design a circuit that will convert a $2-\mathrm{MHz}$ input frequency into a 0.4 MHz output frequency.
12) Design and sketch a MOD-5 ripple down-counter with a manual reset push button. The count sequence are $7,6,5,4,3,7,6,5, \ldots$. And so on.
13) What advantages a synchronous counter have over a ripple-counter?
14) Sketch the waveform at $\overline{\mathrm{C}_{\mathrm{p}}}, 2^{0}, 2^{1}, 2^{2}$ for 10 clock pulses in the counter shown in figure.

15) In the previous problem, find the duty cycle fort the 2^{2} output wave.

CHAPTER 9

REGISTERS

REGISTER WITH PARALLEL LOAD :

A register is a group of binary storage cells suitable for holding binary information. A group of flip-flops constitutes a register. some registers have additional gates that can affect the circuit operation.

A group of flip-flops sensitive to pulse duration is called a latch whereas, a group of flip- flops sensitive to pulse transition is called a register.

The function table of the register is :

Load	Clock	Clear	Function
0	x	1	No change
1	\downarrow	1	Load
x	x	0	clear

- When the clear is LOW, all the flip-flops outputs $\left(\mathrm{A}_{0}-\mathrm{A}_{3}\right)$ are cleared regardless of the value of the load input or the parallel inputs $\left(\mathrm{I}_{0}-\mathrm{I}_{3}\right)$.

Fig(86): 4-bit register with parallel load.

- When the load input is LOW, the J and K inputs of all flip-flops are LOW. So, the register is in the HOLD or no-change state.
- When the load input is HIGH, $\mathrm{J}=\mathrm{I}$ and $\mathrm{K}=\overline{\mathrm{I}}$ for all flip-flops. For example if $\mathrm{I}_{0}=1, \mathrm{~J}_{0}=$ 1 and $\mathrm{K}_{0}=0$. So, the flip-flop is in the set condition and $\mathrm{A}_{0}=1$. Similarly if $\mathrm{I}_{0}=0, \mathrm{~J}_{0}=0$ and $\mathrm{K}_{0}=1$. So, the flip-flop is in the reset condition and $\mathrm{A}_{0}=0$. We notice that in both cases $\mathrm{A}_{0}=\mathrm{I}_{0}$. This holds for all the flip-flops outputs $\left(\mathrm{A}_{0}-\mathrm{A}_{3}\right)$ and the inputs $\left(\mathrm{I}_{0}-\mathrm{I}_{3}\right)$ are parallely loaded in the register .
- The storage capacity of a register is the number of bits (1 s and 0 s) of digital data it can retain. Each flip-flop in a register represents one bit of storage capacity.

SHIFT REGISTER BASICS:

A register is a digital circuit with two basic functions :

Data storage and data movement. The storage capability of a register makes it an important type of memory device. The shifting capability of a register permits the movement of data from stage to stage within the register or into or out of the register upon application of clock pulses. The following figure illustrates the types of data movement in shift registers. The block represents any arbitrary 4-bit register, and the arrows indicate the direction of data movement.

a) Serial ini'shift right/Serial out

c) Parallel in/Serial Jut
e) Parallel in/Parallel out
a) Rutate lefi

b) Serial inishift lett'Seria: out

d) Serial in/ Parallel out

SERIAL IN/SERIAL OUT SHIFT REGISTERS:

The serial in / serial out shift register accepts data serially, i.e. one bit at a time on a single line. It produces the stored information on its output also in serial form. Figure(87) shows a 4-bit serial in / serial out shift register using D flip-flops.

The output of each FF is connected as an input to the next flip-flop. So, the data are shifted to the right from one flip-flop to another. Suppose that the register initially contains (0111) and the data 1011 are serially (bit by bit) loaded to the D input of the left flip- flop . The contents of the register and the serial output after each clock pulse are shown in the following table:

Clock pulse	Serial I/P Bit	State of register (parallel outputs)				Serial 0/P bit
Initial	1	0	1	1	1	1
1	1	1	0	1	1	1
2	0	1	1	0	1	1
3	1	0	1	1	0	0
4	x	1	0	1	1	1

- To take serial data out of FF0, the data enters the D input of FF3 and are shifted to the right one bit with each clock pulse. After four clock pulses the data appear at Q_{0} and can be obtained serially one bit for each clock pulse .
- The previous register can also be operated as a serial in/parallel out shift register. In this case, data can be obtained from the Q output of the four flip-flops at the same time. But, we should note that to load a register with four consecutive bits, we should wait for four clock pulses.
- It is obvious from the previous discussion that the shift register is simpler to implement but it is slower in operation.
- The previous register is a shift right register. We can implement a shift left register in a similar way but connecting the output of a flip-flop to the input of the flip-flop to the left, the serial input is connected to FF_{0} and the serial out put is taken from FF_{3}.

Fig(88): an 8-bit serial in'/ serial out shift register.

A block diagram for an 8-bit serial in/serial out shift- register is shown in figure(88).

A block diagram for a 4-bit serial in/ parallel out shift register is shown in figure(89).

Fig(89): a 4-bit serial in / parallel out shift register.

PARALLEL IN/SERIAL OUT SHIFT REGISTERS

For a register with parallel data inputs, the bits are entered simultaneously into their respective stages on parallel line rather than on a bit-by-bit basis on one line as with serial data inputs. The serial output is the same as described before, once the data are completely stored in the register.

The data storage elements can be D flip-flops, R-S flip-flops or J-K flip-flops. In the next circuit we will use a J-K flip-flop. Most J-Ks are negative edge triggered and will have an active-low asynchronous Set ($\overline{\mathrm{S}}_{\mathrm{D}}$) and Reset ($\overline{\mathrm{R}}_{\mathrm{D}}$). Figure (90) shows the circuit connections for a 4-bit parallel-in, serial out shift register that is first reset and then parallel loaded with an active-LOW 7 (1000), and then shifted right four positions.

All clock inputs are fed from a common clock input. Each flip-flop will respond to its J-K inputs at every negative clock input edge. Because every J-K input is connected to the preceding stage output, then at each negative clock edge each flip-flop will change to the state of the flip-flop to its left. In other words, all data bits will be shifted one position to

the right.
Initially, RESET goes low, resulting Q_{0} to Q_{3} to Zero. Next , the parallel data are input (parallel loaded) via the D_{0} to D_{3} input lines. Because the $\overline{\mathrm{SET}}$ inputs are active LOW, the complement of the number to be loaded must be used. The $\overline{\mathrm{SET}}$ inputs must be returned HIGH before shifting can be initiated.

At the first negative clock edge,

Q 0
takes on the value of Q_{1}
takes on the value of Q_{2}
Q_{2}
takes on the value of Q_{3}
Q3
is Reset by $\mathrm{J}=0, \mathrm{~K}=1$

In effect, the bits have all shifted one position to the right. The following negative edges of clock periods 2,3 and 4 will each shift the bits one more position to the right.

The serial output data come out of the right - end flip-flop $\left(\mathrm{Q}_{0}\right)$. As the LSB was parallel loaded into the right most flip-flop, the LSB will be shifted out first. The order of the parallel input data bits could have been reversed and the MSB would have come out first. Either case is acceptable. It is up to the designer to know which is first, MSB or LSB, and when to read the serial output data line.

Figure (91) shows how shift registers are commonly used in data communications systems. Computers operate on data internally in a parallel format. To communicate over a serial cable or a telephone line, the data must first be converted to the serial format. For example, for computer A to send data to computer B, computer A will parallel load 8 bits of data into shift register A and then apply eight clock pulses. The 8 data bits output from shift register A will travel across the serial communication line to shift register B , which is concurrently loading the 8 bits. After shift register B has received all 8 data bits, it will output them on its parallel output lines to computer B. This is a simplification of the digital communication that takes place between computers, but it illustrates the heart of the system, the shift register.

Fig(91): Using shift registers to provide serial communication. Between computers having parallel data.

Figure (92) illustrates another way to implement a 4-bit parallel in/serial out shift register. Notice that there are four data-input lines, $\mathrm{D}_{0}, \mathrm{D}_{1}, \mathrm{D}_{2}$ and D_{3}, and a SHIFT/ $\overline{\mathrm{LOAD}}$ input, which allows four bits of data to be loaded in parallel into the register. When SHIFT/ $\overline{\text { LOAD }}$ is Low, the AND gates to the right in each pair of gates are enabled (the gates connected to the inverters) allowing each data bit to be applied to the D input of its corresponding flip-flop. When a clock pulse is applied, the flip-flops with $\mathrm{D}=1$ will SET and those with $\mathrm{D}=0$ will RESET, thereby storing all four bits simultaneously.

When SHIFT/ $\overline{\text { LOAD }}$ is HIGH, the AND gates to the left in each pair of gates are enabled (gates connected directly to SHIFT/ $\overline{\mathrm{LOAD}}$ input) allowing the data bits to shift right from one stage to the next. The OR gates allow either the normal shifting operation or the parallel data- entry operation, depending on which AND gates are enabled by the level on the SHIFT/ $\overline{\mathrm{LOAD}}$ input. Note that each OR gate and the 2-AND gates connected to it act as a 2 X 1 multiplexer. So, if we want the register to perform n-operations we could use an Nx1 multiplexer.

Figure (92): A 4-bit parallel in / serial out shift register using D-iriputs for parallel load.

BIDIRECTIONAL SHIFT REGISTER:

A bi-directional shift register is one in which the data can be shifted either left or right. It can be implemented by using gating logic or interchangeably a multiplexer that enables the transfer of data in parallel or from one stage to the next stage either to the right or to the left according to the control signals.

Figure (93) shows a 4-bit bi-directional shift register with parallel load. It consists of four D flip-flops and four multiplexers. The four multiplexers have two common selection variables S_{1} and S_{0}. When $\mathrm{S}_{1} \mathrm{~S}_{0}=00$, input 0 is selected by the multiplexer and the present value of the register is applied to the D inputs of the flip-flops. The next clock pulse transfers into each
flip-flop the binary value it held previously, and no change of state occurs. When $\mathrm{S}_{1} \mathrm{~S}_{0}=01$, terminals 1 of the multiplexer inputs have a path to the D inputs of the flip-flops. This causes a shift-right operation, with the serial input transferred into flip-flop A_{3}. When $\mathrm{S}_{1} \mathrm{~S}_{0}=10$, a shift-left operation results, with the serial input transferred into flip-flop Ao. Finally, when $\mathrm{S}_{1} \mathrm{~S}_{0}=11$, the binary information on the parallel input lines is transferred into the register simultaneously during the next clock pulse.

Fig(93): Bidirectional shift register with parallel load.

The function table of the register is :

S_{1}	S_{0}	Operation
0	0	No change.
0	1	Shift right.
1	0	Shift left.
1	1	Parallel load.

EXAMPLE 39

The contents of a 4-bit register are initially 1101. The register is shifted six times to the right with the serial input being 101101. What is the content of the register after each shift?

Solution:

	Serial input	Register contents			
Initially	1	1	1	0	1
After $\mathbf{T}_{\mathbf{1}}$	0	1	1	1	0
${\text { After } \mathbf{T}_{\mathbf{2}}}$	1	0	1	1	1
After $\mathbf{T}_{\mathbf{3}}$	1	1	0	1	1
After \mathbf{T}_{4}	0	1	1	0	1
After $\mathbf{T}_{\mathbf{5}}$	1	0	1	1	0
After $\mathbf{T}_{\mathbf{6}}$		1	0	1	1

EXAMPLE 40

Design a shift register with parallel load that operates according to the following table:

Shift	Load	Operation
$\mathbf{0}$	$\mathbf{0}$	No change
$\mathbf{0}$	$\mathbf{1}$	Parallel load
1	X	Shift right

Solution:

Fig(94)

RING SHIFT COUNTER AND JOHNSON SHIFT COUNTER:

Two common circuits that are used to create sequential control waveforms for digital systems are the ring and Johnson shift counters. They are similar to a synchronous counter because the clock input to each flip-flop is driven by the same clock pulse. Their outputs do not count in true binary, but instead provide a repetitive sequence of digital output levels. These shift counters are used to control a sequence of events in a digital system (digital sequences).

Fig(95): Circuit connections of ring shift counter.

Fig(96): Output waveform of ring shift counter.

In the case of a 4-bit ring shift counter, the output at each flip-flop will be HIGH for one clock period, then LOW for the next three, and then repeat as shown in figure (96). To form the ring shift counter of figure (95), the $\mathrm{Q}-\overline{\mathrm{Q}}$ output of each stage is fed to the J-K input of the first stage. Before applying clock pulses, the shift counter is preset with a $1-0-0-0$.

Ring shift counter operation

The RC circuit connected to the power supply will provide a LOW then HIGH as soon as the power is turned on, forcing a HIGH-LOW-LOW-LOW AT $\mathrm{Q}_{0}-\mathrm{Q}_{1}-\mathrm{Q}_{2}-\mathrm{Q}_{3}$, which is the necessary preset condition for a ring shift counter. At the first negative clock input edge, Q_{0} will go LOW because just before the clock edge J_{0} was low (from Q ${ }_{3}$) and K 0 was HIGH
(from $\overline{\mathrm{Q}_{0}}$). At the same clock edge, Q_{1} will be HIGH because its J-K inputs are connected to $\mathrm{Q}_{0}-\overline{\mathrm{Q}_{0}}$, which were 1-0. The Q_{2} and Q_{3} flip-flops will remain Reset (LOW) because their JK inputs see a $0-1$ from the previous flip-flops.

Now, the ring shift counter is outputting a $0-1-0-0($ period 2$)$. At the negative edge of period 2, the flip-flop outputs will respond to whatever levels are present at their J-K inputs, the same as explained in the preceding paragraph. That is, because $\mathrm{J}_{2}-\mathrm{K}_{2}$ are looking back at (connected to) $\mathrm{Q}_{1}-\overline{\mathrm{Q}}_{1}(1-0)$, then Q_{2} will go HIGH. All other flip-flops are looking back at a $0-1$, so they will Reset (LOW). This cycle repeats continuously. The system acts like it is continuously "pushing" the initial HIGH level at Q_{0} through the four flip-flops.

The Johnson shift counter circuit is similar to the ring shift counter except that the output lines of the last flip-flop are crossed (thus an alternative name is twisted ring counter) before feeding back to the input of the first flip-flop and all flip-flops are initially RESET as shown in figure (97).

Johnson shift counter operation

The RC circuit provides an automatic RESET to all four flip-flops, so the initial outputs will all be RESET (LOW). At the first negative clock input edge, the first flip-flop will set HIGH because J_{0} is connected to $\overline{\mathrm{Q}_{3}}(\mathrm{HIGH})$ and K_{0} is connected to Q_{3} (LOW). The $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ and Q_{3} outputs will follow the state of their preceding flip-flops because of their direct connection J to Q . Therefore, during period 2, the output is $1-0-0-0$.

At the next negative edge, Q_{0} remains HIGH because it takes on the opposite state of $\mathrm{Q}_{3}, \mathrm{Q}_{1}$ goes HIGH because it takes on the same state as $\mathrm{Q}_{0}, \mathrm{Q}_{2}$ stays LOW, and Q_{3} stays LOW. Now the output is 1-1-0-0.

The sequence continues as shown in figure (98). Notice that, during period 5, Q3 gets Set HIGH. At the end of period 5, Q_{0} gets Reset LOW because the outputs of Q_{3} are crossed, so Q_{0} takes the opposite state of Q_{3}.

Fig(97): Circuit connections of Johnson shift counter.

Fig(98): Output waveforms of Johnson counter.

